MitoQ Clinical Trials And Research Studies

Don't just take our word on MitoQ, there are over 400 published, peer-reviewed papers from the world's leading research institutions.

Don't just take our word on MitoQ, there are over 400 published, peer-reviewed papers from the world's leading research institutions.

Our top clinical trials

MitoQ is excited to support a wide range of studies with leading institutions around the world. Discover our top seven clinical trials or take a deep dive below.

Top 7 MitoQ clinical trials

- Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults.
Rossman MJ et al. Hypertension. 2018;71:1056-1063. DOI: 10.1161/HYPERTENSIONAHA.117.10787
Read the study summary

- The mitochondria targeted antioxidant MitoQ, attenuates exercise induced mitochondrial DNA damage.
Williamson J et al. Redox Biology. 2020 August 6. DOI: 10.1016/j.redox.2020.101673
Read the study summary

- MitoQ supplementation improves leg-extension power in healthy late middle-aged and older adults.
Bispham NZ et al. The Journal of the Federation of American Societies for Experimental Biology. 2017; 31 (1) (suppl) abs. lb852 (LINK)

- MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men.
Pham T et al. European Journal of Applied Physiology. 2020 May 26. DOI: 10.1007/s00421-020-04396-4

- Park SY et al. American Journal of Physiology-Heart and Circulatory Physiology. 2020 Jul 24. DOI: 10.1152/ajpheart.00235.2020

- Gane EJ et al. Liver International. 2010;30(7):1019-26. DOI: 10.1111/j.1478-3231.2010.02250.x

- Johnson C et al. August 10, 2016. Mendus.org. DOI: 10.13140/RG.2.1.2329.8805

 

Studies and papers on MitoQ

Click on the drop-down to view more...
Vascular Health

- Ritou E et al. 2020. Conference on Retroviruses and Opportunistic Infections. Boston, Massachusetts. 8-11 March.

- Vasodilatory and vascular mitochondrial respiratory function with advancing age: Evidence of a free radically-mediated link in the human vasculature. 
Park SH et al. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2020 Feb 5. DOI: 10.1152/ajpregu.00268.2019

- Pekas L et al. July 2020. Med Sci Sports Exerc 52(7S):902-902. DOI: 10.1249/01.mss.0000685352.94627.34

- Sheak JR et al. American Journal of Physiology-Heart and Circulatory Physiology. 2020 Jan 20. DOI: 10.1152/ajpheart.00629.2019

- Effects of treadmill exercise and MitoQ treatment on vascular function in D-galactose-induced aging rat.
Kim D et al. Korean Journal of Sport Science. 2019, Vol. 30. No.4689-699. DOI: 10.24985/kjss.201930.4.689

- Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults.
Rossman MJ et al. Hypertension. 2018;71:1056-1063. DOI: 10.1161/HYPERTENSIONAHA.117.10787

- Suresh K et al. 2018. American Journal of Physiology-Lung Cellular and Molecular Physiology. DOI: 10.1152/ajplung.00430.2017

- Pak O et al. European Respiratory Journal. 2018. pii: 1701024. DOI: 10.1183/13993003.01024-2017

- Age-related endothelial dysfunction in human skeletal muscle feed arteries: The role of free radicals derived from mitochondria in the vasculature.
Park SY et al. Acta Physiologica . 2018; 222(1). DOI: 10.1111/apha.12893

- Gioscia-Ryan RA et al. Journal of Applied Physiology. 2017: jap006702017. DOI: 10.1152/japplphysiol.00670.2017

- Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice.
Gioscia-Ryan RA et al. Aging (Albany NY). 2016;8(11):2897-2914. DOI: 10.18632/aging.101099

- Scheibe S et al. Free Radical Biology and Medicine 96:S50 2016. DOI: 10.1016/j.freeradbiomed.2016.04.106

- Gioscia-Ryan RA et al. The Journal of Physiology. 2014; 592(Pt 12): 2549–2561. DOI: 10.1113/jphysiol.2013.268680

- Ma S et al. Am J Hypertension. 2014;27(3):345-54. DOI: 10.1093/ajh/hpt225

- Redox signalling via oxidative inactivation of PTEN modulates pressure-dependent myogenic tone in rat middle cerebral arteries.
Gebremedhin D et al. PLoS One. 2013; 8(7): e68498. DOI: 10.1371/journal.pone.0068498

- Mackenzie RM et al. Clinical Science (London, England 1979). 2013; 124(Pt 6): 403–411. DOI: 10.1042/CS20120239

- Evidence for a relationship between mitochondrial complex I activity and mitochondrial aldehyde dehydrogenase during nitroglycerin tolerance: Effects of mitochondrial antioxidants.
Garcia-Bou R et al. Biochim Biophys Acta (BBA)-Bioenergetics. 2012;1817(5):828-37. DOI: 10.1016/j.bbabio.2012.02.013

- Esplugues JV et al. Circulation Resarch. 2006;99(10):1067-75. DOI: 10.1161/01.RES.0000250430.62775.99

Cardiac Health

- Jiang Z et al. Scientific Reports. 2020. DOI: 10.1038/s41598-020-63498-3

- Kim S et al. American Journal Physiology- Heart and Circulatory Physiology. 2020 Jan 31. DOI: 10.1152/ajpheart.00617.2019

- Gallardo et al. European Heart Journal. 2019. DOI: 10.1093/eurheartj/ehz746.0882

- Suresh K et al. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2019. DOI: 10.1152/ajplung.00396.2018

- Goh KY et al. Redox Biology. 2019. Vol 21, 101100. DOI: 10.1016/j.redox.2019.101100

- Wang H et al. Translational Research. 2018. pii: S1931-5244(18)30070-7. DOI: 10.1016/j.trsl.2018.04.005

- Ribeiro Junior RF et al. Free Radical Biology and Medicine. 2018; 117:18-29. DOI: 10.1016/j.freeradbiomed.2018.01.012

- Ice-free cryopreservation of heart valve tissue: The effect of adding MitoQ to a VS83 formulation and its influence on mitochondrial dynamics.
Sui Y et al. Cryobiology. 2018. pii: S0011-2240(17)30599-0. DOI: 10.1016/j.cryobiol.2018.01.008

- Scheibe S et al. Free Radical Biology and Medicine. Vol 108, Suppl. 1, July 2017, S74. DOI: 10.1016/j.freeradbiomed.2017.04.250

- Yong Goh K et al. Federation of American Societies For Experimental Biology Journal. 2017;31:1 supplement, 59.7-59.7. DOI: 10.1152/ajpheart.00638.2014

- An antioxidant to attenuate aoritc aging.
Hine C. Science Translational Medicine. 2017;9(416):eaaq1235. DOI: 10.11.1126/scitranslmed.aaq1235

- Dare AJ et al. The Journal of Heart and Lung Transplantation. 2015; 34(11): 1471–1480. DOI: 10.1016/j.healun.2015.05.007

- Hannson MJ et al. European Journal of Pharmacology. 2015;760: 7-19. DOI: 10.1016/j.ejphar.2015.04.009

- Yancey DM et al. American Journal of Physiology-Heart and Circulatory Physiology. 2015;308(6): H651-63. DOI: 10.1152/ajpheart.00638.2014

- McLachlan J et al. Journal of Hypertension. 2014; 32(3): 555–564. DOI: 10.1097/HJH.0000000000000054

- Ondrasik R et al. Peptides Across the Pacific: The Proceedings of the Twenty-Third American and the Sixth International Peptide Symposium. Prompt Scientific Publishing. 2013. DOI: 10.17952/23APS.2013.064

- Neuzil J et al. Redox Report. 2013; 12:3, 148-162, DOI: 10.1179/135100007X200227

- O’Connell KA et al. Federation of American Societies For Experimental Biology Journal. 2012; 26:1 (suppl), 887.16.

- Davidson SM et al. Cardiovascular Research. 2012;93(3):445-53. DOI: 10.1093/cvr/cvr349

- Fen Pung Y et al. Arteriosclerosis, Thrombosis and Vascular Biology. 2012; 32(2): 325–334. DOI:  10.1161/ATVBAHA.111.241802

- Gladden JD et al. Free Radical Biology and Medicine. 2011;51(11):1975-84. DOI: 10.1016/j.freeradbiomed.2011.08.022

- Chandran K et al. Biophysical Journal. 2009; 96(4): 1388–1398. DOI:  10.1016/j.bpj.2008.10.042

- Graham D et al. Hypertension. 2009;54: 322-328. DOI: 10.1161/HYPERTENSIONAHA.109.130351

- Adlam VJ et al. Federation of American Societies For Experimental Biology Journal. 2005;19(9):1088-95. DOI: 10.1096/fj.05-3718com

Brain & Neurological Health

- Xing et al 2020. Neurodegenerative Diseases. 2020 May 15;1-13. DOI: 10.1159/00507023

- Chen X et al. Biomedicine & Pharmacotherapy. 2020 May. DOI: 10.1016/j.biopha.2020.110003

- Teo E et al. Translational Medicine of Aging. 2020. DOI: 10.1016/j.tma.2019.12.002

- Coppa A et al. Free Radical Biology and Medicine. 2020 Feb 1. DOI: 10.1016/j.freeradbiomed.2020.01.177

- Salvi A et al. Neurobiology of Stress. 2020. DOI: 10.1016/j.ynstr.2019.100205

- Li Y et al. International Journal od Neuroscience. 2020 Jan 14:1-12. DOI: 10.1080/00207454.2020.1715978

- Chen W et al. Oxidative Medicine and Cellular Longevity. 2020. DOI: 10.1155/2020/8285065

- Ünal I et al. International Journal of Neuroscience. 2019 Nov 26:1-14. DOI: 10.1080/00207454.2019.1698567

- Pinho BR et al. Free Radical Biology and Medicine. 2019 Nov 18. DOI: 10.1016/j.freeradbiomed.2019.11.021

- Young ML et al. Molecular and Cellular Neuroscience. 2019. DOI: 10.1016/j.mcn.2019.103409

- Zhang T et al. Stroke. 2019. DOI: 10.1161/STROKEAHA.118.021590

- Zhang et al. Experimental Neurology. 2019. DOI: 10.1016/j.expneurol.2019.02.009

- Kim YR et al. Redox Biology. 2019; 20:544-555. DOI: 10.1016/j.redox.2018.11.013

- Pinho BR et al. Journal of Neurology, Neurosurgery & Psychiatry 2018;A91-A92. DOI: 10.1136/jnnp-2018-EHDN.246

- Hwang S et al. Chonnam Medical Journal. 2018; 54(3): 159–166. DOI: 10.4068/cmj.2018.54.3.159

- Zhou J et al. American Journal of Translational Research. 2018;10(6):1887-1899. eCollection 2018. 

- Xi Y et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2018; pii: S0925-4439(18)30188-1. DOI: 10.1016/j.bbadis.2018.05.018

- Marcuzzi A et al. International Journal of Molecular Sciences. 2018, 19(5), 1523. DOI: 10.3390/ijms19051523

- Maiti AK et al. Biogerontology. 2018. DOI: 10.1007/s10522-018-9756-6

- Jelinek A et al. Free Radical Biology and Medicine. 2018; 117:45-57. DOI: 10.1016/j.freeradbiomed.2018.01.019

- Gan L et al. Toxicology and Applied Pharmacology. 2018;341:1-7. DOI: 10.1016/j.taap.2018.01.003

- Stucki DM et al. Free Radical Biology and Medicine. 2016; 97:427-440. DOI: 10.1016/j.freeradbiomed.2016.07.005

- Johnson C et al. August 10, 2016. Mendus.org. DOI: 10.13140/RG.2.1.2329.8805

- Nussbaumer M et al. Neuropsychopharmacology. 2016;41(7):1751-8. DOI: 10.1038/npp.2015.341

- Yin X et al. Human Molecular Genetics. 2016;25(9):1739-53. DOI: 10.1093/hmg/ddw045

- Mitochondrial redox and pH signalling occurs in axonal and synaptic organelle clusters.
Breckwoldt MO et al. Scientific Reports. 2016;22(6):23251. DOI: 10.1038/srep23251

- Manus MJ et al. Mol Cell Neurosci. 2014; 63:13-23. DOI: 10.1016/j.mcn.2014.09.002

- The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: Involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signalling.
Saez-Atienzar S et al. Cell Death & Disease. 2014; 5(8): e1368. DOI: 10.1038/cddis.2014.320

- Ng LF et al. Free Radical Biology and Medicine. 2014;71:390-401. DOI: 10.1016/j.freeradbiomed.2014.03.003

- Miquel E et al. Free Radical Biology and Medicine. 201;70:204-13. DOI: 10.1016/j.freeradbiomed.2014.02.019

- Mao P et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2013; 1832(12): DOI: 10.1016/j.bbadis.2013.09.005

- Davies Al et al. Annals of Neurology. 2013;74(6):815-25. DOI: 10.1002/ana.24006

- Solesio ME et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2013;1832(1):174-82. DOI: 10.1016/j.bbadis.2012.07.009

- Ma T et al. The Journal of Neuroscience. 2012; 32(40): 13701–13708. DOI: 10.1523/JNEUROSCI.2107-12.2012

- McManus MJ et al. The Journal of Neuroscience. 2011; 31(44): 15703–15715. DOI: 10.1523/JNEUROSCI.0552-11.2011

- Ma T et al. The Journal of Neuroscience. 2011; 31(15): 5589–5595. DOI: 10.1523/JNEUROSCI.6566-10.2011

- Snow BJ et al. Movement Disorder. 2010; 25(11):1670-4. DOI: 10.1002/mds.23148

- Ghosh A et al. Free Radical Biology and Medicine. 2010; 49(11): 1674–1684. DOI: 10.1016/j.freeradbiomed.2010.08.028

- Manczak M et al. Journal of Alzheimer’s Disease. 2010; 20(Suppl 2): S609–S631. DOI: 10.3233/JAD-2010-100564

- Cassina P et al. The Journal of Neuroscience. 2008; 28(16): 4115–4122. DOI: 10.1523/JNEUROSCI.5308-07.2008

- Pehar M et al. The Journal of Neuroscience. 2007;27(29):7777-85. DOI: 10.1523/JNEUROSCI.0823-07.2007

- Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappaB.
Barhoumi R et al. Molecular Brain Research. 2004;122(2):167-79. DOI: 10.1016/j.molbrainres.2003.12.009

Liver Health

- Desta YT et al. International Immunopharmacology. 2020 May 4;84:106518. DOI: 10.1016/j.intimp.2020.106518

- Wu Y et al. International Immunopharmacology. 2020 Jan 10;80:106189. DOI: 10/1016/j.intimp.2020.106189

- Sen Roy S et al. HIV Medicine. 2019;20:201-231. DOI: 10.1111/hiv.12814

- Turkseven et al. American Journal of Physiology – Gastrointestinal and Liver Physiology. 2019 Dec 9. DOI: 10.1152/ajpgi.00135.2019

- Li G et al. Nutrients. 2019, 11, 1669. DOI: 10.3390/nu11071669

- van Golen RF et al. Biochimica Biophysica Acta (BBA) - Molecular Basis of Disease. 2019;pii: S0925-4439(19)30014-6. DOI: 10.1016/j.bbadis.2019.01.014

- Turkseven S et al. Journal of Hepatology. 2018; 68:S466-S467. DOI: 10.1016/S0168-8278(18)31178-4

- Hao L et al. Redox Biology. 2018;14: 626-636. DOI: 10.1016/j.redox.2017.11.005

- Weiskirchen R. Liver International. 2017;37(7):963-965. DOI: 10.1111/liv.13442

- Vilaseca M et al. Liver International. 2017;37(7):1002-1012. DOI: 10.1111/liv.13436

- Hoyt LR et al. Redox Biology. 2017; 12: 883–896. DOI: 10.1016/j.redox.2017.04.020

- Rehman H et al. International Journal of Physiology, Pathophysiology and Pharmacology. 2016; 8(1): 14–27. 

- Mukhopadhyay P et al. Free Radical Biology and Medicine. 2012;53(5):1123–1138. DOI: 10.1016/j.freeradbiomed.2012.05.036

- Chacko BK et al. Hepatology. 2011; 54(1): 153–163. DOI:  10.1002/hep.24377

- Gane EJ et al. Liver International. 2010;30(7):1019-26. DOI: 10.1111/j.1478-3231.2010.02250.x

- Froehlich E et al. J Hepatol. 44: S267-S267. 41st Annual Meeting of the European Association for the Study of the Liver; APR 26-30, 2006; Vienna, AUSTRIA. [Poster]

- Davies A et al. Journal of Hepatology. 2002;36(1):195-196. DOI: 10.1016/S0168-8278(02)80692-4

Kidney

- Gao P et al. Clinical Science (London, England: 1979). 2020 Mar 13. DOI: 10.1042/CS20200005

- Miao J et al. Aging Cell. 2019;00:e13004. DOI: 10.111/acel.13004

- Gottwald EM et al. Physiological Reports. 2018;6(7):e13667. DOI: 10.14814/phy2.13667

- Liu X et al. Magnetic Resonance in Medicine. 2018;79(3):1559-1567. DOI: 10.1002/mrm.26772

- Han Y et al. Redox Biology. 2018;16: 32-46. DOI: 10.1016/j.redox.2018.02.013

- Ishimoto Y et al. Molecular and Cellular Biology. 2017;37: 24 e00337-17. DOI: 10.1128/MCB.00337-1

- Hamed, M. O. Doctoral thesis. Sep 2017. DOI: 10.17863/CAM.13853

- Xiao L et al. Redox Biology. 2017; 11: 297–311. DOI: 10.1016/j.redox.2016.12.022

- Ward MS et al. Scientific Reports 2017. 7: 15190. DOI: 10.1038/s41598-017-15589-x

- Galaretta CI et al. American Journal of Physiology – Renal Physiology. 2015;308(10): F1155-66. DOI: 10.1152/ajprenal.00591.2014

- Dare AJ et al. Redox Biology. 2015; 5: 163–168. DOI:  10.1016/j.redox.2015.04.008

- Gu Q et al. Molecular and Cellular Biochemistry. 2015;406(1-2):217-25. DOI: 10.1007/s11010-015-2439-6

- Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK) cells.
Marine A et al. Redox Biology. 2014; 2: 348–357. DOI: 10.1016/j.redox.2014.01.014

- Reily C. Free Radical Biology and Medicine. 2014; 49:S40. DOI: 10.1016/j.freeradbiomed.2010.10.083

- Patil NK et al. Federation of American Societies of Experimental Biology. 2013 27:1_supplement, 889.8-889.8

- Parajuli N et al. PLoS ONE. 2012;7(11). DOI:10.1371/journal.pone.0048590

- Mitchell T et al. The Journal of Pharmacology and Experimental Therapeutics. 2011;336(3):682-692. DOI:10.1124/jpet.110.176743

- Chacko BK et al. Biochemical Journal. 2010; 432(Pt 1): 9–19. DOI: 10.1042/BJ20100308

Metabolic Health

- Fink B et al. Free Radical Research. 2020 Apr 24:1-8. DOI: 10.1080/10715762.2020.1754409

- Walenna NF et al. Journal Biological Chemistry. 2020 Jan 28. DOI: 10.1074/jbc.RA119.010683

- Marin-Royo G et al. The Journal of the Federation of American Societies for Experimental Biology. 2019. DOI: 10.1096/fj.201900347RR

- Mitochondrial targeting of antioxidants alters pancreatic acinar cell bioenergetics and determines cell fate.
Armstrong JA et al. International Journal of Molecular Sciences. 2019;20(7), 1700. DOI: https://www.mdpi.com/1422-0067/20/7/1700

- Escribano-Lopez I et al. Cellular Physiology & Biochemistry. 2019;52(2):186-197. DOI: 10.33594/000000013

- The impact of age and sex on body composition and glucose sensitivity in C57Bl/6J mice.
Reynolds TH et al. Physiological Reports. 2019;7(3):e13995. DOI: 10.14814/phy2.13995

- Imai Y et al. Pharmacology Research & Perspectives. 2018;6(3):e00393. DOI: 10.1002/prp2.393

- Escribano-López I et al. Free Radical Biology and Medicine. 2018;120(1): S79-S80. DOI: 10.1016/j.freeradbiomed.2018.04.263

- Ju L et al. Oncotarget. 2017; 8(59): 99931–99939. DOI:  10.18632/oncotarget.21965

- Fink BD et al. Pharmacology Research & Perspectives. 2017;5(2): e00301. DOI: 10.1002/prp2.301

- Escribano-Lopez et al. Redox Biology. 2016; 10: 200–205. DOI: 10.1016/j.redox.2016.10.017

- Coudray C et al. British Journal of Nutrition. 2016; 115(7):1155-66. DOI: 10.1017/S0007114515005528

- Fouret G et al. Biochimica et Biophys Acta (BBA) - Bioenergetics. 2015; 1847(10):1025-35. DOI: 10.1016/j.bbabio.2015.05.019

- Li J et al. Scientific Reports. 2015;5:12724. DOI: 10.1038/srep12724

- Huang W et al. Mediators of Inflammation. 2015: 901780. DOI:  10.1155/2015/901780

- Fink BD et al. The Journal of Pharmacology and Experimental Therapeutics. 2014; 351(3): 699–708. DOI: 10.1124/jpet.114.219329

- Feillet-Coudray C et al. Free Radical Research. 2014; 48(10):1232-46. DOI: 10.3109/10715762.2014.945079 

- Wang Q et al. PLoS One. 2013;8(6): e66417. DOI: 10.1371/journal.pone.0066417

- Mercer JR et al. Free Radical Biology and Medicine. 2012;52(5):841-9. DOI: 10.1016/j.freeradbiomed.2011.11.026

- Lim S et al. Cellular Physiology and Biochemistry. 2011;28(5):873-86. DOI: 10.1159/000335802

Musculoskeletal Health and Exercise

- MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men.
Pham T et al. European Journal of Applied Physiology. 2020 May 26. DOI: 10.1007/s00421-020-04396-4

- Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function.
Thoma A et al. Biogeronology. 2020 May 23. DOI: 10.1007/s10522-020-09838-x

- Kang L et al. Cell Proliferation. 2020 Feb 5;e12779. DOI: 10.1111/cpr.12779

- Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise.
Hancock M et al. Elife. 2018;7. pii: e41044. DOI: 10.7554/eLife.41044

- MitoQ supplementation improves leg-extension power in healthy late middle-aged and older adults.
Bispham NZ et al. The Journal of the Federation of American Societies for Experimental Biology. 2017; 31 (1) (suppl) abs. lb852

- Farnaghi S et al. The Journal of the Federation of American Societies for Experimental Biology. 2017;31(1):356-367. DOI: 10.1096/fj.201600600R

- Mitochondria‐specific antioxidant supplementation does not influence endurance exercise training‐induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake.
Shill DD et al. J Physiol. 2016; 594(23): 7005–7014. DOI: 10.1113/JP272491

- Sakellariou GK et al. The Journal of the Federation of American Societies for Experimental Biology. 2016; 30(11): 3771–3785. DOI: 10.1096/fj.201600450R

- MitoQ supplementation improves motor function and muscle mitochondrial health in old male mice.
Justice JN et al. Gerontologist 2015;55(2):163. DOI: doi.org/10.1093/geront/gnv535.02

- Patková J et al. Cellular Physiology and Biochemistry. 2014;33(5):1439-51. DOI: 10.1159/000358709

- Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage.
Wolff KJ et al. Journal of Orthopaedic Research. 2013; 31(2): 191–196. DOI: 10.1002/jor.22223

- Mitochondrial electron transport and glycolysis are coupled in articular cartilage.
Martin AJ et al. Osteoarthritis and Cartilage. 2012; 20(4): 323–329. DOI: 10.1016/j.joca.2012.01.003

- MitoQ10 induces adipogenesis and oxidative metabolism in myotube cultures.
Nierobisz LS et al. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2011;158(2):125-31. DOI: 10.1016/j.cbpb.2010.10.003

- Lowes DA et al. Free Radical Research. 2009;43(4):323-8. DOI: 10.1080/10715760902736275

Skin Health

- Victorelli S et al. The EMBO Journal. 2019. DOI: 10.15252/embj.2019101982

- Tamer TM et al. Materials (Basel). 2018;11(4). pii: E569. DOI: 10.3390/ma11040569

- Protective effect of mitochondrially targeted antioxidant MitoQ on oxidatively stressed fibroblasts.
Valachová K et al. L. Chemical Paper. 2018 72: 1223. DOI: 10.1007/s11696-017-0359-5

- Anti-aging potentials of methylene blue for human skin longevity.
Xiong Z-M et al. Scientific Reports. 2017 May. 7; 24. DOI: 10.1038/s41598-017-02419-3

- Oyewole AO et al. The Journal of the Federation of American Societies for Experimental Biology. 2014;28(1):485-94. DOI: 10.1096/fj.13-237008

- Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin.
Fisher GJ et al. The American Journal of Pathology. 2009; 174(1): 101–114. DOI: 10.2353/ajpath.2009.080599

- Cellular response to infrared radiation involves retrograde mitochondrial signalling.
Schroeder P et al. Free Radical Biology and Medicine. 2007;43(1):128-35. DOI: 10.1016/j.freeradbiomed.2007.04.002

- 7-Dehydrocholesterol enhances ultraviolet A-induced oxidative stress in keratinocytes: Roles of NADPH oxidase, mitochondria and lipid rafts.
Valencia A et al. Free Radical Biology and Medicine. 2006; 41(11): 1704–1718. DOI: 10.1016/j.freeradbiomed.2006.09.006

- MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress.
Saretzki G et al. Aging Cell. 2003;2(2):141-3. DOI: 10.1046/j.1474-9728.2003.00040.x

Immunology

- Codo A et al. SSRN Electronic Journal. 2020 May. DOI: 10.2139/ssrn.3606770

- Fortner et al. Lupus Science & Medicine. 2020;7:e000387. DOI: 10.1136/lupus-2020-000387

- Tissue-resident macrophages actively suppress IL-1beta release via a reactive prostanoid/IL-10 pathway.
Ipseiz N et al. The EMBO Journal. 2020 June 2. DOI: 10.15252/embj.2019103454

- Zhang et al. Mediators of Inflammation. 2020. DOI: 10.1155/2020/3276148

- The reduced oligomerization of MAVS mediated by ROS enhances the cellular radioresistance.
Du et al. Oxidative Medicine and Cellular Longevity. 2020 March 4. DOI: 10.1155/2020/2167129

- Sen Roy S et al. HIV Medicine. 2019;20. 231-231. DOI: 10.1111/hiv.128.14

- Budd R et al. Lupus Science & Medicine. 2019;6. DOI: 10.1136/lupus-2019-lsm.38

- Keck F et al. Viruses. 2018;10(11). pii: E606. DOI: 10.3390/v10110606

- Mitochondrial-targeted antioxidant MitoQ prevents E. coli lipopolysaccharide-induced accumulation of triacylglycerol and lipid droplets biogenesis in epithelial cells.
Fock E et al. Journal of Lipids. 2018;5745790. DOI: 10.1155/2018/5745790

- Keck F et al. Virulence. 2018. DOI: 10.1080/21505594.2018.1509668

- Hu Q et al. Cell Death & Disease. 2018; 9(3): 403. DOI: 10.1038/s41419-018-0436-x

- Ho GT et al. Mucosal Immunology. 2018;11(1):120-130. DOI: 10.1038/mi.2017.31

- Webster SJ et al. PLoS Pathogens. 2017; 13(6): e1006383. DOI: 10.1371/journal.ppat.1006383

- Formentini L et al. Cell Reports. 2017;19(6):1202-1213. DOI: 10.1016/j.celrep.2017.04.036

- Chu F-F et al. Redox Biology. 2017;11: 144–156. DOI: 10.1016/j.redox.2016.11.001

- Fisicaro P et al. Nature Medicine. 2017;23(3):327-336. DOI: 10.1038/nm.4275

- Ho GT et al. Journal of Crohn’s and Colitis. 2017;11(1):S97. DOI: 10.1093/ecco-jcc/jjx002.163

- Buskiewicz IA et al. Science Signaling. 2016; 9(456): ra115. DOI: 10.1126/scisignal.aaf1933

- Wiens KE et al. PLoS Pathogens. 2016;12(8):e1005809. DOI: 10.1371/journal.ppat.1005809

- Spadoni T et al. Annals of the Rheumatic Diseases. 2016;75(2):521.2-521 2016 Jul. DOI: 10.1136/annrheumdis-2016-eular.3908

- Maiti AK et al. Scientific Reports. 2015; 5: 15434. DOI: 10.1038/srep15434

- Kelly B et al. Journal of Biological Chemistry. 2015; 290(33): 20348–20359. DOI: 10.1074/jbc.M115.662114

- Powell RD et al. The Journal of Trauma and Acute Care Surgery. 2015;78(3):573-9. DOI: 10.1097/TA.0000000000000533

- Chen S et al. Chinese Critical Care Medicine. 2015;27(2):86-91. DOI: 10.3760/cma.j.issn.2095-4352.2015.02.002

- Ramsey H et al. International Immunopharmacology. 2014; 23(2): 658–663. DOI: 0.1016/j.intimp.2014.10.019

- Francischetti IM et al. PLoS One. 2014;9(2): e87140. DOI: 10.1371/journal.pone.0087140

- Dashdorj A et al. BioMed Central Medicine.; 11: 178. DOI: 10.1186/1741-7015-11-178

- Lowes DA et al. British Journal of Anaesthesia. 2013; 110(3): 472–480. DOI: 10.1093/bja/aes577

- Zhi L et al. The Journal of Immunology. 2012; 189(4): 1639–1647. DOI: 10.4049/jimmunol.1200528

- Apostolova N et al. Pharmaceutical Research. 2011;28(11):2910-9. DOI: 10.1007/s11095-011-0528-0

- An investigation of the effects of MitoQ on human peripheral mononuclear cells.
Marthandan S et al. Free Radical Research.
2011;45(3):351-8. DOI: 10.3109/10715762.2010.532497

- Lowes DA et al. Free Radical Biology and Medicine. 2008;45(11):1559-65. DOI: 10.1016/j.freeradbiomed.2008.09.003

- Supinski GS et al. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2009; 297(4): R1095–R1102. DOI: 10.1152/ajpregu.90902.2008

Genetic Health

- Polyak E et al. Molecular Genetics and Metabolism. 2018;123(4):449-462. DOI: 10.1016/j.ymgme.2018.02.013

- Rivera-Barahona A et al. Molecular Genetics and Metabolism. 2017;122(1-2):43-50. DOI: 10.1016/j.ymgme.2017.07.009

- Bhattacharjee A et al. Journal of Biological Chemistry. 2016; 291(32): 16644–16658. DOI: 10.1074/jbc.M116.727248

- Santini E et al. The Journal of Neuroscience. 2015; 35(49): 16213–16220. 10.1523/JNEUROSCI.2246-15.2015

- Gallego-Villar L et al. Biochemical and Biophysical Research Communications. 2014;452(3):457-61. DOI: 10.1016/j.bbrc.2014.08.091

- Migrino RQ et al. American Journal of Physiology-Heart and Circulatory Physiology. 2011;301(6):H2305-12. DOI: 10.1152/ajpheart.00503.2011

- Misfolding of short-chain acyl-CoA dehydrogenase leads to mitochondrial fission and oxidative stress.
Schmidt SP et al. Molecular Genetics and Metabolism. 2010;100(2):155-62. DOI: 10.1016/j.ymgme.2010.03.009

- Jauslin ML et al. The Journal of the Federation of American Societies for Experimental Biology. 2003;17(13):1972-4. DOI: 10.1096/fj.03-0240fje

Eye Health

- Zheng Q et al. Chemical Engineering Journal. 2020 May 23. DOI: 10.1016/j.cej.2020.125621

- Mitochondrial-targeted antioxidants attenuate TGF-β2 signaling in human trabecular meshwork cells.
Rao VR et al. Investigative Ophthalmology & Visual Science. 2019;60:3613-3624. DOI: 10.1167/iovs.19-27542

- Vlachantoni D et al. Human Molecular Genetics. 2011; 20(2):322-35. DOI: 10.1093/hmg/ddq467

- Mustapha NM et al. Journal of Ophthalmology. 2010; 2010: 746978. DOI: 10.1155/2010/746978

- Vlachantoni D et al. Investigative Ophthalmology & Visual Science. 2006;47(13):5773

Lung Health

- Li R et al. BioMed Research International. 2019. DOI: 10.1155/2019/524898

- Chen S et al. International Journal of Biological Sciences. 2019 Jun 2;15(7):1440-1451. DOI: 10.7150/ijbs.30193

- Wiegman CH et al. The Journal of Allergy and Clinical Immunology. 2015; 136(3): 769–780. DOI: 10.1016/j.jaci.2015.01.046

- Jaffer OA et al. American Journal of Respiratory Cell and Molecular Biology. 2015; 52(1): 106–115. DOI: 10.1165/rcmb.2013-0519OC

Reproductive Health and Development Biology

- Yang Y et al. Antioxidants & Redox Signaling. 2020 Mar 31. DOI: 10.1089/ars.2019.7891

- Autophagy regulates functional differentiation of mammary epithelial cells.
Elswood J et al. Autophagy. 2020. DOI: 10.1080/15548627.2020.1720427

- Marei W et al. Human Reproduction. 2019. DOI: 10.1093/humrep/dez161

- Ibrahim AA et al. Life Sciences. 2019 Jul 12. DOI: 10/1016/j.lfs.2019.116655

- Ganguly E et al. Frontiers in Physiology. 2019 May 24. DOI: 10.3389/fphys.2019.00562

- Exposing mouse oocytes to MitoQ during in vitro maturation improves maturation and developmental competence.
Hosseinzadeh Shirzeyli M et al. Iranian Journal of Biotechnology. 2019.

- Zhang J et al. Toxicology and Applied Pharmacology. 2019 Mar 2. pii: S0041-008X(19)30075-4. DOI: 10.1016/j.taap.2019.03.001

- Ding Y et al. International Journal of Molecular Medicine. 2018 Nov 5. [Epub ahead of print]. DOI: 10.3892/ijmm.2018.3977

- Nuzzo AM et al. The American Journal of Pathology. 2018 Sep 21. pii: S0002-9440(18)30019-1. DOI: 10.1016/j.ajpath.2018.07.027

- Vaka VR et al. Hypertension. 2018 Jul 16. pii. DOI: 10.1161/HYPERTENSIONAHA.118.11290

- Aljunaidy MM et al. Pharmacological Research.;134:332-342. DOI: 10.1016/j.phrs.2018.05.006

- Sukjamnong S et al. Scientific Reports. 2018; 8: 6631. DOI: 10.1038/s41598-018-24949-0

- Phillips TJ et al. Scientific Reports. 2017;7(1):9079. DOI: 10.1038/s41598-017-06300-1

- Sukjamnong S et al. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2017;313(2): L416-L423. DOI: 10.1152/ajplung.00134.2017

- Botting KJ et al. 2016. Proceedings of the Physical Society (1985-1967), PCB334 (2016).

- Mitochondria-targeted antioxidant mitoquinone protects post-thaw human sperm against oxidative stress injury.
Liu L et al. Zhonghua Nan Ke Xue. 2016;22(3):205-11.

- Skeffington K et al. Aug 2015. Fetal and Neonatal Physiological Society 42nd Annual meeting: Vancouver

- Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish.
Fang L et al. Cryobiology. 2014;69(3):386-93. DOI: 10.1016/j.cryobiol.2014.09.005

- Hobbs CE et al. Pediatrics International. 2008; 50(4): 481-8. DOI: 10.1111/j.1442-200X.2008.02705.x

Toxicity Support

- Guigni BA et al. American Journal of Physiology-Cell Physiology. 2018 Sep 12. DOI: 10.1152/ajpcell.00002.2018

- Dirain CO et al. Otology & Neurotology. 2018;39(1):111-118. DOI: 10.1097/MAO.0000000000001638

- Maiti AK et al. Neurotoxicity Research. 2017;31(3):358-372. DOI: 10.1007/s12640-016-9692-7

- Tate AD et al. Otolaryngology-Head and Neck Surgery. 2017;156(3):543-548. DOI: 10.1177/0194599816678381

- Jurkuvenaite A et al. Free Radical Biology and Medicine. 2015; 85: 83–94. DOI: 10.1016/j.freeradbiomed.2015.03.039

- Ng MR et al. Otolaryngology-Head and Neck Surgery. 2015;152(4):729-33. DOI: 10.1177/0194599814564934

- Jadidian A et al. Otology & Neurotology. 2015;36(3):526-30. DOI: 10.1097/MAO.0000000000000517

- Ojano-Dirain CP et al. Otology & Neurotology. 2014;35(3):533-9. DOI: 10.1097/MAO.0000000000000192

- Mukhopadhyay P et al. Free Radical and Medicine. 2012;52(2): 497–506. DOI: 10.1016/j.freeradbiomed.2011.11.001

- Ojano-Dirain CP et al. Laryngoscope. 2012;122(11):2543-8. DOI: 10.1002/lary.23593

- Wani WY et al. Neuropharmacology. 2011;61(8):1193-201. DOI: 10.1016/j.neuropharm.2011.07.008

- Vergeade A et al. Free Radical Biology and Medicine. 2010;49(5):748-56. DOI: 10.1016/j.freeradbiomed.2010.05.024

- Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice.
Rodriguez-Cuenca S et al. Free Radical Biology and Medicine. 2010;48(1):161-72. DOI: 10.1016/j.freeradbiomed.2009.10.039

- Whiteman M et al. Antioxidant & Redox Signaling. 2008;10(3):641-50. DOI: 10.1089/ars.2007.1879

- Kalivendi SV et al. Biochemical Journal. 2005; 389(Pt 2): 527–539. DOI: 10.1042/BJ20050285

Redox Biology

- Olesen M et al. Redox Biology. 2020 May 5. DOI: 10.1016/j.redox.2020.101558

- Detection of 8-oxoguanine and apurinic/apyrimidinic sites using a fluorophore-labeled probe with cell-penetrating ability.
Kang DM et al. BMC Molecular and Cell Biology. 2019 Nov 27;20(1):54. DOI: 10.1186/s12860-019-236

- A mitochondria-targeted antioxidant affects the carotenoid-based plumage of red crossbills.
Cantarero A et al. bioRxiv. 2019 DOI: 10.1101/839670

- Ammonia sensitive SLC4A11 mitochondrial uncoupling reduces glutamine induced oxidative stress.
Ogando DG et al. Redox Biology. 2019;26:101260. DOI: 10.1016/j.redox.2019.101260

- Redox-regulation and life-history trade offs: Scavenging mitochondrial ROS improves growth in a wild bird.
Velando A et al. Scientific Reports. 2019;9(1). DOI: 10.1038/s41598-019-3853335-5

- Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy.
Kim JH et al. Cell Death and Differentiation. 2018 Jul 24. DOI: 10.1038/s41418-018-0165-9

- Mitochondria-targeted molecules determine the redness of the zebra finch bill.
Cantarero A et al. Biology Letters. 2017;13(10). pii: 20170455. DOI: 10.1098/rsbl.2017.0455

- Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
Tsai IC et al. Journal of Molecular and Cellular Cardiology. 2016;98:18-27. DOI: 10.1016/j.yjmcc.2016.07.001

- Hämäläinen RH et al. Cell Reports. 2015; 11(10): 1614–1624. DOI: 10.1016/j.celrep.2015.05.009

- Huang W-Y et al. PLoS One. 2013;8(11):e81546. DOI: 10.1371/journal.pone.0081546

- Differential modulation of ROS signals and other mitochondrial parameters by the antioxidants MitoQ, resveratrol and curcumin in human adipocytes.
Hirzel E et al. Journal of Receptors and Signal Transduction. 2013; 33(5):304-12. DOI: 10.3109/10799893.2013.822887

- TNFα-induced lysosomal membrane permeability is downstream of MOMP and triggered by caspase-mediated NDUFS1 cleavage and ROS formation.
Huai J et al. Journal of Cell Science. 2013;126(Pt 17):4015-25. DOI: 10.1242/jcs.129999

- Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation.
Lee S et al. Cell Research. 2011;21(5):817-34. DOI: 10.1038/cr.2011.55

- Role of mitochondrial reactive oxygen species in osteoclast differentiation.
Srinivasan S et al. Annals of the New York Academy of Sciences. 2010; 1192(1): 245–252. DOI: 10.1111/j.1749-6632.2009.05377.x

- Flow dilation in rat small mesenteric arteries is mediated by hydrogen peroxide generated from CYP epoxygenases and xanthine oxidase.
Ngai CY. The Open Circulation and Vascular Journal. 2009 Apr. 2(1):15-22. DOI: 10.2174/1877382600902010015

- Doughan AK et al. Antioxidants & Redox Signaling. 2007; 9(11):1825-36. DOI: 10.1089/ars.2007.1693

- Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria.
O'Malley Y et al. Journal of Biological Chemsitry. 2006;281(52):39766-75. DOI: 10.1074/jbc.M608268200

- Respiratory chain deficiency slows down cell-cycle progression via reduced ROS generation and is associated with a reduction of p21CIP1/WAF1.
Schauen M et al. Journal of Cellular Physiology. 2006;209(1):103-12. DOI: 10.1002/jcp.20711

- Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress.
Chernyak BV et al. Biochimica et Biophysica Acta (BBA) – Bioenergetics . 2006;1757(5-6):525-34. DOI: 10.1016/j.bbabio.2006.02.019

- OxLDL enhances L-type Ca2+ currents via lysophosphatidylcholine-induced mitochondrial reactive oxygen species (ROS) production.
Fearon IM. Cardiovascular Research. 2006;69(4):855-64. DOI: 10.1016/j.cardiores.2005.11.019

- Pletjushkina OY et al. Biochemistry (Moscow). 2006;71(1):60-7. DOI: 10.1134/S0006297906010093

- Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion.
Pletjushkina OY et al. Cell Death & Differentiation. 2005;12:1442–1444. DOI: 10.1038/sj.cdd.4401685

- Koopman WJ et al. Cellular Metabolism. 2005;288(6):C1440-50. DOI: 10.1152/ajpcell.00607.2004

- Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools.
James AM et al. Journal of Biological Chemistry. 2005;280(22):21295-312. DOI: 10.1074/jbc.M501527200

- A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signalling of HIF-1alpha.
Sanjuán-Pla A et al. FEBS Letters. 2005;579(12):2669-74. DOI: 10.1016/j.febslet.2005.03.088

- Protective role of MnSOD and redox regulation of neuronal cell survival.
Galeotti T et al. Biomedicine & Pharmacotherapy. 2005;59(4):197-203. DOI: 10.1016/j.biopha.2005.03.002

- Mitochondrial redox state regulates transcription of the nuclear-encoded mitochondrial protein manganese superoxide dismutase: A proposed adaptive response to mitochondrial  redox imbalance.
Kim A et al. Free Radical Biology and Medicine. 2005;38(5):644-54. DOI: 10.1016/j.freeradbiomed.2004.10.030

- Dhanasekaran A et al. Journal of Biological Chemistry. 2004;279(36):37575-87. DOI: 10.1074/jbc.M404003200

- Schäfer M et al. Circulation Research. 2003;92(9):1010-5. DOI: 10.1161/01.RES.0000070882.81508.FC

- Redox regulation of cAMP-responsive element-binding protein and induction of manganous superoxide dismutase in nerve growth factor-dependent cell survival.
Bedogni B et al. Journal of Biological Chemistry. 2003;278(19):16510-9. DOI: 10.1074/jbc.M301089200

- Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants.
Echtay KS et al. Journal of Biological Chemistry. 2002;277(49):47129-35. DOI: 10.1074/jbc.M208262200

Cellular Biology and Mechanism of Action

- Gouzos M et al. Frontiers in Cellular and Infection Microbiology. 2020 19 March. DOI: 10.3389/fcimb.2020.00110

- Vizioli MG et al. Genes & Development. 2020 Jan 30. DOI: 10.1101/gad.331272.119

- Subversion of host cell mitochondria by RSV to favour virus production is dependent on inhibition of mitochondrial complex I and ROS generation.
Hu M et al. Cells. 2019;8, 1417. DOI: 10.3390/cells8111417

- Changes in the turnover of the cellular proteome during metabolic reprogramming: A role for mtROS in proteostasis.
Garcia A et al. Journal of Proteome Research. 2019 Jul 2019. DOI: 10.1021/acs.jproteome.9b00239

- Slobodnyuk K et al. Cell Death & Disease. 2019 May 15;10(6):376. DOI: 10.1038/s41419-019-1607-0

- Ravasz D et al. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2018 May 7. pii: S0005-2728(18)30105-1. DOI: 10.1016/j.bbabio.2018.05.002

- Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes.
Rokitskaya TI et al. Bioelectrochemistry. 2016; 111:23-30. DOI: 10.1016/j.bioelechem.2016.04.009

- On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response.
Bonet-Ponce L et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2015;1852(7):1400-9. DOI: 10.1016/j.bbadis.2015.03.006

- Rogers C et al. Free Radical Biology and Medicine. 2014; 67:330-41. DOI: 10.1016/j.freeradbiomed.2013.11.012

- Porteous CM et al. Biochimica et Biophysica Acta (BBA) – General Subjects. 2013;1830(6):3458-65. DOI: 10.1016/j.bbagen.2013.02.005

- Raghunathan VK et al. Biomaterials. 2013;34(14):3559-70. DOI: 10.1016/j.biomaterials.2013.01.085

- Mitochondrially targeted compounds and their impact on cellular bioenergetics.
Reily C et al. Redox Biology. 2013; 1(1): 86–93. DOI: 10.1016/j.redox.2012.11.009

- Bioenergetic effects of mitochondrial-targeted coenzyme Q analogs in endothelial cells.
Fink BD et al. The Journal of Pharmacology and Experimental Therapeutics. 2012; 342(3): 709–719. DOI: 10.1124/jpet.112.195586

- Porteous CM et al. Biochimica et Biophysica Acta (BBA) – General Subjects. 2010;1800(9):1009-17. DOI: 10.1016/j.bbagen.2010.06.001

- Synthesis and characterization of MitoQ and idebenone analogues as mediators of oxygen consumption in mitochondria.
Duveau DY et al. Bioorganic & Medicinal Chemistry. 2010;18(17):10.1016/j.bmc.2010.06.104. DOI: 10.1016/j.bmc.2010.06.104

- Li Y et al. Asian Journal of Pharmaceutical Sciences. 2010 June. 5(3):106-113.

- Interaction of yeast mitochondria with fatty acids and mitochondria-targeted lipophilic cations.
Sukhanova EI et al. Biochemistry (Moscow). 2010;75(2):139-44. DOI: 10.1134/S000297910020033

- Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I.
Plecitá-Hlavatá L et al. The International Journal of Biochemistry & Cell Biology. 2009;41(8-9):1697-707. DOI: 10.1016/j.biocel.2009.02.015

- Chain-breaking antioxidant activity of reduced forms of mitochondria-targeted quinones, a novel type of geroprotectors.
Roginsky VA et al. Aging (Albany NY). 2009; 1(5): 481–489. DOI: 10.18632/aging.100049

- Electrical relaxation experiments with bilayer lipid membranes in the presence of cationic quinones.
Rokitskaya T et al. Biophysical Journal 2009 Feb. 96(3) 663A. DOI: 10.1016/j.bpj.2008.12.3505

- Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells.
Fink BD et al. PLoS One. 2009 Jan. 4(1):e4250. DOI: 10.1371/journal.pone.0004250

- The mitochondrial antioxidants MitoE2 and MitoQ10 increase mitochondrial Ca2+ load upon cell stimulation by inhibiting Ca2+ efflux from the organelle.
Leo S et al. Annals of the New York Academy of Sciences. 2008; 1147: 264–274. DOI: 10.1196/annals.1427.019

- Transport and metabolism of some cationic ubiquinone antioxidants (MitoQn) in Caco-2 cell monolayers.
Li Y et al. European Journal of Drug Metabolism and Pharmacokinetics. 2008;33(4):199-204. DOI: 10.1007/BF03190873

- Cations SkQ1 and MitoQ accumulated in mitochondria delay opening of ascorbate/FeSO4-induced nonspecific pore in the inner mitochondrial membrane.
Khailova LS et al. Biochemistry (Moscow). 2008;73(10):1121-4. DOI: 10.1134/S0006297908100088

- Kinetic analysis of permeation of mitochondria-targeted antioxidants across bilayer lipid membranes.
Rokitskaya TI et al. Journal of Membrane Biology. 2008;224(1-3):9-19. DOI: 10.1007/s00232-008-9124-6

- Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells.
Ross MF et al. Biochemical Journal. 2008;411(3):633-45. DOI: 10.1042/BJ20080063

- Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments.
Antonenko YN et al. Journal of Membrane Biology. 2008;222(3):141-9. DOI: 10.1007/s00232-008-9108-6

- Interaction of positively charged ubiquinone analog (MitoQ10) with DT-diaphorase from liver mitochondria.
Kargin VI et al. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology (2008) 2: 33. DOI: 10.1007/s11827-008-1006-7

- Is antioxidant potential of the mitochondrial targeted ubiquinone derivative MitoQ conserved in cells lacking mtDNA?
Lu C et al. Antioxidants & Redox Signaling. 2008;10(3):651-60. DOI: 10.1089/ars.2007.1865

- Quijano C et al. American Journal of Physiology – Heart and Circulatory Physiology. 2007;293(6):H3404-14. DOI: 10.1152/ajpheart.00761.2007

- Jou MJ et al. Journal of Pineal Research. 2007;43(4):389-403. DOI: 10.1111/j.1600-079X.2007.00490.x

- Role of calcium and cyclophilin D in the regulation of mitochondrial permeabilization induced by glutathione depletion.
Lu C et al. Biochemical and Biophysical Research Communications. 2007 Nov;363(3):572-7. DOI: 10.1016/j.bbrc.2007.08.196

- Jarvis RM et al. Free Radical Research. 2007;41(9):1041-6. DOI: 10.1080/10715760701557153

- Transport and metabolism of MitoQ10, a mitochondria-targeted antioxidant, in Caco-2 cell monolayers.
Li Y et al. Journal of Pharmacy and Pharmacology. 2007;59(4):503-11. DOI: 10.1211/jpp.59.4.0004

- Thioredoxin 1 and thioredoxin 2 have opposed regulatory functions on hypoxia-inducible factor-1alpha.
Zhou J et al. Journal of Biological Chemistry. 2007;282(10):7482-90. DOI: 10.1074/jbc.M608289200

- High concentration of antioxidants N-acetylcysteine and mitoquinone-Q induces intercellular adhesion molecule 1 and oxidative stress by increasing intracellular glutathione.
Mukherjee TK et al. J Immunol. 2007;178(3):1835-44. DOI: 10.4049/jimmunol.178.3.1835

- Interaction of the mitochondrial-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases.
James AM et al. The Journal of Biological Chemistry. 2007; 282(20):14708-14718. DOI: 10.1074/jbc.M611463200

- Quantitation and metabolism of mitoquinone, a mitochondria-targeted antioxidant, in rat by liquid chromatography/tandem mass spectrometry.
Li Y et al. Rapid Communications in Mass Spectrometry. 2007; 21(13):1958-64. DOI: 10.1002/rcm.3048

- The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster.
Magwere T et al. Mechanisms of Ageing and Development. 2006;127(4):356-70. DOI: 10.1016/j.mad.2005.12.009

- Effect of oxidative stress on dynamics of mitochondrial reticulum.
Pletjushkina OY et al. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2006;1757(5-6):518-24. DOI: 10.1016/j.bbabio.2006.03.018

- Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant.
Asin-Cayuela J et al. FEBS Letters. 2004;571(1-3):9-16. DOI: 10.1016/j.febslet.2004.06.045

- Delivery of bioactive molecules to mitochondria in vivo.
Smith RA et al. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(9):5407-12. DOI: 10.1073/pnas.0931245100

- Kelso GF et al. Annals of the New York Academy of Sciences. 2002; 959:263-74. DOI: 10.1111/j.1749-6632.2002.tb02098.x

- Kelso GF et al. Journal of Biological Chemistry. 2001;276(7):4588-96. DOI: 10.1074/jbc.M009093200

Reviews, Editorials and Letters

- The effect of MitoQ on aging-related biomarkers: A systematic review and meta-analysis.
Braakhuis A et al. Oxidative Medicine and Cellular Longevity. Volume 2018, Article ID 8575263. DOI: 10.1155/2018/8575263

- Animal and human studies with the mitochondria-targeted antioxidant MitoQ.
Smith RA et al. Annals of the New York Academy of Sciences. 2011;1201:96-103. DOI: 10.1111/j.1749-6632.2010.05627.x

- Have no fear, MitoQ10 is here.
Barbato JC. Hypertension. 2009;54(2):222-3. DOI: 10.1161/HYPERTENSIONAHA.109.135533

- MitoQ- A mitochondria-targeted antioxidant.
Tauskela JS et al. IDrugs. 2007;10(6):399-412.

- Targeting mitochondrial fitness as a strategy for healthy vascular aging.
Rossman et al. Clin Sci (Lond). 2020 134 (12): 1491-1519. DOI: 10.1042/CS20190559

- Mitochondria-targeted nutraceuticals in sports medicine: A new perspective.
Ostojic SM. Res Sports Med. 2016;25(1):91-100. DOI: 10.1080/15438627.2016.1258646

Interested In Conducting Research?

We encourage research on MitoQ and are able to supply MitoQ free of charge for research purposes. Please contact us stating your project and plan and we will review and respond.

As seen on
cbs mailonline Mens_Health_logo_orange_bg WG_Logo-1130x300 ls_logo