750+ independent high-impact, peer-reviewed journals, and 19 clinical trials. Here are some highlights.
HEART
Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults
MitoQ decreases free radical production by mitochondria, and significantly supports arterial function in older adults and therefore the health of the arteries. In this clinical trial it was confirmed that: MitoQ greatly improved the ability of arteries to dilate (by 42%), MitoQ significantly supports the health of aorta & MitoQ reduces oxidized LDL cholesterol by 13%.
Read the summaryEXERCISE
Mitochondria-Targeted Antioxidant Supplementation Improves 8km Time Trial Performance in Middle-Aged Trained Male Cyclist
The study showed that after 4 weeks of MitoQ supplementation, the mean completion time for a time trial was 10.8 seconds faster and an increase of 10 watts of power. MitoQ supplementation may be an effective nutritional strategy to attenuate exercise-induced increases in oxidative damage to lipids and improve cycling performance.
Read the summarySAFETY
The influence of acute high dose MitoQ on urinary kidney injury markers in healthy adults
Results found that acute, high-dose MitoQ supplementation did not result in high concentrations of kidney injury biomarkers compared to placebo samples. Preliminary evidence is that ongoing MitoQ use in the normal range (10mg-20mg) is beneficial to kidney health.
Read the summaryAll studies
VASCULAR HEALTH (18)
Ritou E et al. 2020. Conference on Retroviruses and Opportunistic Infections. Boston, Massachusetts. 8-11 March
Vasodilatory and vascular mitochondrial respiratory function with advancing age: Evidence of a free radically-mediated link in the human vasculature.. Park SH et al. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2020 Feb 5DOI: 10.1152/ajpregu.00268.2019
Pekas L et al. July 2020. Med Sci Sports Exerc 52(7S):902-902.DOI: 10.1249/01.mss.0000685352.94627.34
Sheak JR et al. American Journal of Physiology-Heart and Circulatory Physiology. 2020 Jan 20DOI: 10.1152/ajpheart.00629.2019
Effects of treadmill exercise and MitoQ treatment on vascular function in D-galactose-induced aging rat.. Kim D et al. Korean Journal of Sport Science. 2019, Vol. 30. No.4689-699DOI: 10.24985/kjss.201930.4.689
Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Rossman MJ et al. Hypertension. 2018;71:1056-1063DOI: 10.1161/HYPERTENSIONAHA.117.10787
Suresh K et al. 2018. American Journal of Physiology-Lung Cellular and Molecular PhysiologyDOI: 10.1152/ajplung.00430.2017
Pak O et al. European Respiratory Journal. 2018. pii: 1701024DOI: 10.1183/13993003.01024-2017
Age-related endothelial dysfunction in human skeletal muscle feed arteries: The role of free radicals derived from mitochondria in the vasculature. Park SY et al. Acta Physiologica . 2018; 222(1)DOI: 10.1111/apha.12893
Gioscia-Ryan RA et al. Journal of Applied Physiology. 2017: jap006702017DOI: 10.1152/japplphysiol.00670.2017
Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice. Gioscia-Ryan RA et al. Aging (Albany NY). 2016;8(11):2897-2914DOI: 10.18632/aging.101099
Scheibe S et al. Free Radical Biology and Medicine 96:S50 2016DOI: 10.1016/j.freeradbiomed.2016.04.106
Gioscia-Ryan RA et al. The Journal of Physiology. 2014; 592(Pt 12): 2549–2561DOI: 10.1113/jphysiol.2013.268680
Ma S et al. Am J Hypertension. 2014;27(3):345-54DOI: 10.1093/ajh/hpt225
Redox signalling via oxidative inactivation of PTEN modulates pressure-dependent myogenic tone in rat middle cerebral arteries. Gebremedhin D et al. PLoS One. 2013; 8(7): e68498DOI: 10.1371/journal.pone.0068498
Mackenzie RM et al. Clinical Science (London, England 1979). 2013; 124(Pt 6): 403–411DOI: 10.1042/CS20120239
Evidence for a relationship between mitochondrial complex I activity and mitochondrial aldehyde dehydrogenase during nitroglycerin tolerance: Effects of mitochondrial antioxidants. Garcia-Bou R et al. Biochim Biophys Acta (BBA)-Bioenergetics. 2012;1817(5):828-37DOI: 10.1016/j.bbabio.2012.02.013
Esplugues JV et al. Circulation Resarch. 2006;99(10):1067-75DOI: 10.1161/01.RES.0000250430.62775.99
CARDIAC HEALTH (24)
Jiang Z et al. Scientific Reports. 2020DOI: 10.1038/s41598-020-63498-3
Kim S et al. American Journal Physiology- Heart and Circulatory Physiology. 2020 Jan 31DOI: 10.1152/ajpheart.00617.2019
Gallardo et al. European Heart Journal. 2019DOI: 10.1093/eurheartj/ehz746.0882
Suresh K et al. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2019DOI: 10.1152/ajplung.00396.2018
Goh KY et al. Redox Biology. 2019. Vol 21, 101100DOI: 10.1016/j.redox.2019.101100
Wang H et al. Translational Research. 2018. pii: S1931-5244(18)30070-7DOI: 10.1016/j.trsl.2018.04.005
Ribeiro Junior RF et al. Free Radical Biology and Medicine. 2018; 117:18-29DOI: 10.1016/j.freeradbiomed.2018.01.012
Ice-free cryopreservation of heart valve tissue: The effect of adding MitoQ to a VS83 formulation and its influence on mitochondrial dynamics. Sui Y et al. Cryobiology. 2018. pii: S0011-2240(17)30599-0DOI: 10.1016/j.cryobiol.2018.01.008
Scheibe S et al. Free Radical Biology and Medicine. Vol 108, Suppl. 1, July 2017, S74DOI: 10.1016/j.freeradbiomed.2017.04.250
Yong Goh K et al. Federation of American Societies For Experimental Biology Journal. 2017;31:1 supplement, 59.7-59.7DOI: 10.1152/ajpheart.00638.2014
An antioxidant to attenuate aoritc aging. Hine C. Science Translational Medicine. 2017;9(416):eaaq1235DOI: 10.11.1126/scitranslmed.aaq1235
Dare AJ et al. The Journal of Heart and Lung Transplantation. 2015; 34(11): 1471–1480DOI: 10.1016/j.healun.2015.05.007
Hannson MJ et al. European Journal of Pharmacology. 2015;760: 7-19DOI: 10.1016/j.ejphar.2015.04.009
Yancey DM et al. American Journal of Physiology-Heart and Circulatory Physiology. 2015;308(6): H651-63DOI: 10.1152/ajpheart.00638.2014
McLachlan J et al. Journal of Hypertension. 2014; 32(3): 555–564DOI: 10.1097/HJH.0000000000000054
Ondrasik R et al. Peptides Across the Pacific: The Proceedings of the Twenty-Third American and the Sixth International Peptide Symposium. Prompt Scientific Publishing. 2013DOI: 10.17952/23APS.2013.064
Neuzil J et al. Redox Report. 2013; 12:3, 148-162DOI: 10.1179/135100007X200227
O’Connell KA et al. Federation of American Societies For Experimental Biology Journal. 2012; 26:1 (suppl), 887.16
Davidson SM et al. Cardiovascular Research. 2012;93(3):445-53DOI: 10.1093/cvr/cvr349
Fen Pung Y et al. Arteriosclerosis, Thrombosis and Vascular Biology. 2012; 32(2): 325–334DOI: 10.1161/ATVBAHA.111.241802
Gladden JD et al. Free Radical Biology and Medicine. 2011;51(11):1975-84DOI: 10.1016/j.freeradbiomed.2011.08.022
Chandran K et al. Biophysical Journal. 2009; 96(4): 1388–1398DOI: 10.1016/j.bpj.2008.10.042
Graham D et al. Hypertension. 2009;54: 322-328DOI: 10.1161/HYPERTENSIONAHA.109.130351
Adlam VJ et al. Federation of American Societies For Experimental Biology Journal. 2005;19(9):1088-95DOI: 10.1096/fj.05-3718com
BRAIN AND NEUROLOGICAL HEALTH (84)
Xing et al 2020. Neurodegenerative Diseases. 2020 May 15;1-13.DOI: 10.1159/00507023
Chen X et al. Biomedicine & Pharmacotherapy. 2020 May.DOI: 10.1016/j.biopha.2020.110003
Teo E et al. Translational Medicine of Aging. 2020.DOI: 10.1016/j.tma.2019.12.002
Coppa A et al. Free Radical Biology and Medicine. 2020 Feb 1.DOI: 10.1016/j.freeradbiomed.2020.01.177
Salvi A et al. Neurobiology of Stress. 2020.DOI: 10.1016/j.ynstr.2019.100205
Li Y et al. International Journal od Neuroscience. 2020 Jan 14:1-12.DOI: 10.1080/00207454.2020.1715978
Chen W et al. Oxidative Medicine and Cellular Longevity. 2020.DOI: 10.1155/2020/8285065
Ünal I et al. International Journal of Neuroscience. 2019 Nov 26:1-14.DOI: 10.1080/00207454.2019.1698567
Pinho BR et al. Free Radical Biology and Medicine. 2019 Nov 18.DOI: 10.1016/j.freeradbiomed.2019.11.021
Young ML et al. Molecular and Cellular Neuroscience. 2019.DOI: 10.1016/j.mcn.2019.103409
Zhang T et al. Stroke. 2019.DOI: 10.1161/STROKEAHA.118.021590
Zhang et al. Experimental Neurology. 2019.DOI: 10.1016/j.expneurol.2019.02.009
Kim YR et al. Redox Biology. 2019; 20:544-555.DOI: 10.1016/j.redox.2018.11.013
Pinho BR et al. Journal of Neurology, Neurosurgery & Psychiatry 2018;A91-A92.DOI: 10.1136/jnnp-2018-EHDN.246
Hwang S et al. Chonnam Medical Journal. 2018; 54(3): 159–166.DOI: 10.4068/cmj.2018.54.3.159
Zhou J et al. American Journal of Translational Research. 2018;10(6):1887-1899. eCollection 2018.
Xi Y et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2018; pii: S0925-4439(18)30188-1.DOI: 10.1016/j.bbadis.2018.05.018
Marcuzzi A et al. International Journal of Molecular Sciences. 2018, 19(5), 1523.DOI: 10.3390/ijms19051523
Maiti AK et al. Biogerontology. 2018.DOI: 10.1007/s10522-018-9756-6
Jelinek A et al. Free Radical Biology and Medicine. 2018; 117:45-57.DOI: 10.1016/j.freeradbiomed.2018.01.019
Gan L et al. Toxicology and Applied Pharmacology. 2018;341:1-7.DOI: 10.1016/j.taap.2018.01.003
Stucki DM et al. Free Radical Biology and Medicine. 2016; 97:427-440.DOI: 10.1016/j.freeradbiomed.2016.07.005
Johnson C et al. August 10, 2016. Mendus.org.DOI: 10.13140/RG.2.1.2329.8805
Nussbaumer M et al. Neuropsychopharmacology. 2016;41(7):1751-8.DOI: 10.1038/npp.2015.341
Yin X et al. Human Molecular Genetics. 2016;25(9):1739-53.DOI: 10.1093/hmg/ddw045
Mitochondrial redox and pH signalling occurs in axonal and synaptic organelle clusters.. Breckwoldt MO et al. Scientific Reports. 2016;22(6):23251.DOI: 10.1038/srep23251
Manus MJ et al. Mol Cell Neurosci. 2014; 63:13-23.DOI: 10.1016/j.mcn.2014.09.002
The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: Involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signalling.. Saez-Atienzar S et al. Cell Death & Disease. 2014; 5(8): e1368.DOI: 10.1038/cddis.2014.320
Ng LF et al. Free Radical Biology and Medicine. 2014;71:390-401.DOI: 10.1016/j.freeradbiomed.2014.03.003
Miquel E et al. Free Radical Biology and Medicine. 201;70:204-13.DOI: 10.1016/j.freeradbiomed.2014.02.019
Mao P et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2013; 1832(12)DOI: 10.1016/j.bbadis.2013.09.005
Davies Al et al. Annals of Neurology. 2013;74(6):815-25.DOI: 10.1002/ana.24006
Solesio ME et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2013;1832(1):174-82.DOI: 10.1016/j.bbadis.2012.07.009
Ma T et al. The Journal of Neuroscience. 2012; 32(40): 13701–13708.DOI: 10.1523/JNEUROSCI.2107-12.2012
McManus MJ et al. The Journal of Neuroscience. 2011; 31(44): 15703–15715.DOI: 10.1523/JNEUROSCI.0552-11.2011
Ma T et al. The Journal of Neuroscience. 2011; 31(15): 5589–5595.DOI: 10.1523/JNEUROSCI.6566-10.2011
Snow BJ et al. Movement Disorder. 2010; 25(11):1670-4.DOI: 10.1002/mds.23148
Ghosh A et al. Free Radical Biology and Medicine. 2010; 49(11): 1674–1684.DOI: 10.1016/j.freeradbiomed.2010.08.028
Manczak M et al. Journal of Alzheimer’s Disease. 2010; 20(Suppl 2): S609–S631.DOI: 10.3233/JAD-2010-100564
Cassina P et al. The Journal of Neuroscience. 2008; 28(16): 4115–4122.DOI: 10.1523/JNEUROSCI.5308-07.2008
Pehar M et al. The Journal of Neuroscience. 2007;27(29):7777-85.DOI: 10.1523/JNEUROSCI.0823-07.2007
Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappaB.. Barhoumi R et al. Molecular Brain Research. 2004;122(2):167-79.DOI: DOI: 10.1016/j.molbrainres.2003.12.009
Xing et al 2020. Neurodegenerative Diseases. 2020 May 15;1-13DOI: 10.1159/00507023
Chen X et al. Biomedicine & Pharmacotherapy. 2020 MayDOI: 10.1016/j.biopha.2020.110003
Teo E et al. Translational Medicine of Aging. 2020DOI: 10.1016/j.tma.2019.12.002
Coppa A et al. Free Radical Biology and Medicine. 2020 Feb 1DOI: 10.1016/j.freeradbiomed.2020.01.177
Salvi A et al. Neurobiology of Stress. 2020DOI: 10.1016/j.ynstr.2019.100205
Li Y et al. International Journal od Neuroscience. 2020 Jan 14:1-12DOI: 10.1080/00207454.2020.1715978
Chen W et al. Oxidative Medicine and Cellular Longevity. 2020DOI: 10.1155/2020/8285065
Ünal I et al. International Journal of Neuroscience. 2019 Nov 26:1-14DOI: 10.1080/00207454.2019.1698567
Pinho BR et al. Free Radical Biology and Medicine. 2019 Nov 18DOI: 10.1016/j.freeradbiomed.2019.11.021
Young ML et al. Molecular and Cellular Neuroscience. 2019DOI: 10.1016/j.mcn.2019.103409
Zhang T et al. Stroke. 2019DOI: 10.1161/STROKEAHA.118.021590
Zhang et al. Experimental Neurology. 2019DOI: 10.1016/j.expneurol.2019.02.009
Kim YR et al. Redox Biology. 2019; 20:544-555DOI: 10.1016/j.redox.2018.11.013
Pinho BR et al. Journal of Neurology, Neurosurgery & Psychiatry 2018;A91-A92DOI: 10.1136/jnnp-2018-EHDN.246
Hwang S et al. Chonnam Medical Journal. 2018; 54(3): 159–166DOI: 10.4068/cmj.2018.54.3.159
Zhou J et al. American Journal of Translational Research. 2018;10(6):1887-1899. eCollection 2018
Xi Y et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2018; pii: S0925-4439(18)30188-1DOI: 10.1016/j.bbadis.2018.05.018
Marcuzzi A et al. International Journal of Molecular Sciences. 2018, 19(5), 1523DOI: 10.3390/ijms19051523
Maiti AK et al. Biogerontology. 2018DOI: 10.1007/s10522-018-9756-6
Jelinek A et al. Free Radical Biology and Medicine. 2018; 117:45-57DOI: 10.1016/j.freeradbiomed.2018.01.019
Gan L et al. Toxicology and Applied Pharmacology. 2018;341:1-7DOI: 10.1016/j.taap.2018.01.003
Stucki DM et al. Free Radical Biology and Medicine. 2016; 97:427-440DOI: 10.1016/j.freeradbiomed.2016.07.005
Johnson C et al. August 10, 2016. Mendus.orgDOI: 10.13140/RG.2.1.2329.8805
Nussbaumer M et al. Neuropsychopharmacology. 2016;41(7):1751-8DOI: 10.1038/npp.2015.341
Yin X et al. Human Molecular Genetics. 2016;25(9):1739-53DOI: 10.1093/hmg/ddw045
Mitochondrial redox and pH signalling occurs in axonal and synaptic organelle clusters. Breckwoldt MO et al. Scientific Reports. 2016;22(6):23251DOI: 10.1038/srep23251
Manus MJ et al. Mol Cell Neurosci. 2014; 63:13-23DOI: 10.1016/j.mcn.2014.09.002
The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: Involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signalling. Saez-Atienzar S et al. Cell Death & Disease. 2014; 5(8): e1368DOI: 10.1038/cddis.2014.320
Ng LF et al. Free Radical Biology and Medicine. 2014;71:390-401DOI: 10.1016/j.freeradbiomed.2014.03.003
Miquel E et al. Free Radical Biology and Medicine. 201;70:204-13DOI: 10.1016/j.freeradbiomed.2014.02.019
Mao P et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2013; 1832(12)DOI: 10.1016/j.bbadis.2013.09.005
Davies Al et al. Annals of Neurology. 2013;74(6):815-25DOI: 10.1002/ana.24006
Solesio ME et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2013;1832(1):174-82DOI: 10.1016/j.bbadis.2012.07.009
Ma T et al. The Journal of Neuroscience. 2012; 32(40): 13701–13708DOI: 10.1523/JNEUROSCI.2107-12.2012
McManus MJ et al. The Journal of Neuroscience. 2011; 31(44): 15703–15715DOI: 10.1523/JNEUROSCI.0552-11.2011
Ma T et al. The Journal of Neuroscience. 2011; 31(15): 5589–5595DOI: 10.1523/JNEUROSCI.6566-10.2011
Snow BJ et al. Movement Disorder. 2010; 25(11):1670-4DOI: 10.1002/mds.23148
Ghosh A et al. Free Radical Biology and Medicine. 2010; 49(11): 1674–1684DOI: 10.1016/j.freeradbiomed.2010.08.028
Manczak M et al. Journal of Alzheimer’s Disease. 2010; 20(Suppl 2): S609–S631DOI: 10.3233/JAD-2010-100564
Cassina P et al. The Journal of Neuroscience. 2008; 28(16): 4115–4122DOI: 10.1523/JNEUROSCI.5308-07.2008
Pehar M et al. The Journal of Neuroscience. 2007;27(29):7777-85DOI: 10.1523/JNEUROSCI.0823-07.2007
Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappaB. Barhoumi R et al. Molecular Brain Research. 2004;122(2):167-79DOI: 10.1016/j.molbrainres.2003.12.009
LIVER HEALTH (34)
Hao L et al. Redox Biology. 2018;14: 626-636DOI: 10.1016/j.redox.2017.11.005
Weiskirchen R. Liver International. 2017;37(7):963-965DOI: 10.1111/liv.13442
Vilaseca M et al. Liver International. 2017;37(7):1002-1012DOI: 10.1111/liv.13436
Hoyt LR et al. Redox Biology. 2017; 12: 883–896DOI: 10.1016/j.redox.2017.04.020
Rehman H et al. International Journal of Physiology, Pathophysiology and Pharmacology. 2016; 8(1): 14–27
Mukhopadhyay P et al. Free Radical Biology and Medicine. 2012;53(5):1123–1138DOI: 10.1016/j.freeradbiomed.2012.05.036
Chacko BK et al. Hepatology. 2011; 54(1): 153–163DOI: 10.1002/hep.24377
Gane EJ et al. Liver International. 2010;30(7):1019-26DOI: 10.1111/j.1478-3231.2010.02250.x
Froehlich E et al. J Hepatol. 44: S267-S267. 41st Annual Meeting of the European Association for the Study of the Liver; APR 26-30, 2006; Vienna, AUSTRIA. [Poster]
Davies A et al. Journal of Hepatology. 2002;36(1):195-196DOI: 10.1016/S0168-8278(02)80692-4
Desta YT et al. International Immunopharmacology. 2020 May 4;84:106518.DOI: 10.1016/j.intimp.2020.106518
Wu Y et al. International Immunopharmacology. 2020 Jan 10;80:106189.DOI: 10/1016/j.intimp.2020.106189
Sen Roy S et al. HIV Medicine. 2019;20:201-231.DOI: 10.1111/hiv.12814
Turkseven et al. American Journal of Physiology – Gastrointestinal and Liver Physiology. 2019 Dec 9.DOI: 10.1152/ajpgi.00135.2019
Li G et al. Nutrients. 2019, 11, 1669.DOI: 10.3390/nu11071669
van Golen RF et al. Biochimica Biophysica Acta (BBA) - Molecular Basis of Disease. 2019;pii: S0925-4439(19)30014-6.DOI: 10.1016/j.bbadis.2019.01.014
Turkseven S et al. Journal of Hepatology. 2018; 68:S466-S467.DOI: 10.1016/S0168-8278(18)31178-4
Hao L et al. Redox Biology. 2018;14: 626-636.DOI: 10.1016/j.redox.2017.11.005
Weiskirchen R. Liver International. 2017;37(7):963-965.DOI: 10.1111/liv.13442
Vilaseca M et al. Liver International. 2017;37(7):1002-1012.DOI: 10.1111/liv.13436
Hoyt LR et al. Redox Biology. 2017; 12: 883–896.DOI: 10.1016/j.redox.2017.04.020
Rehman H et al. International Journal of Physiology, Pathophysiology and Pharmacology. 2016; 8(1): 14–27.
Mukhopadhyay P et al. Free Radical Biology and Medicine. 2012;53(5):1123–1138.DOI: 10.1016/j.freeradbiomed.2012.05.036
Chacko BK et al. Hepatology. 2011; 54(1): 153–163.DOI: 10.1002/hep.24377
Gane EJ et al. Liver International. 2010;30(7):1019-26.DOI: 10.1111/j.1478-3231.2010.02250.x
Froehlich E et al. J Hepatol. 44: S267-S267. 41st Annual Meeting of the European Association for the Study of the Liver; APR 26-30, 2006; Vienna, AUSTRIA.
Davies A et al. Journal of Hepatology. 2002;36(1):195-196.DOI: 10.1016/S0168-8278(02)80692-4
Desta YT et al. International Immunopharmacology. 2020 May 4;84:106518DOI: 10.1016/j.intimp.2020.106518
Wu Y et al. International Immunopharmacology. 2020 Jan 10;80:106189DOI: 10/1016/j.intimp.2020.106189
Sen Roy S et al. HIV Medicine. 2019;20:201-231DOI: 10.1111/hiv.12814
Turkseven et al. American Journal of Physiology – Gastrointestinal and Liver Physiology. 2019 Dec 9DOI: 10.1152/ajpgi.00135.2019
Li G et al. Nutrients. 2019, 11, 1669DOI: 10.3390/nu11071669
van Golen RF et al. Biochimica Biophysica Acta (BBA) - Molecular Basis of Disease. 2019;pii: S0925-4439(19)30014-6DOI: 10.1016/j.bbadis.2019.01.014
Turkseven S et al. Journal of Hepatology. 2018; 68:S466-S467DOI: 10.1016/S0168-8278(18)31178-4
KIDNEY (36)
Gao P et al. Clinical Science (London, England: 1979). 2020 Mar 13DOI: 10.1042/CS20200005
Miao J et al. Aging Cell. 2019;00:e13004DOI: 10.111/acel.13004
Gottwald EM et al. Physiological Reports. 2018;6(7):e13667DOI: 10.14814/phy2.13667
Liu X et al. Magnetic Resonance in Medicine. 2018;79(3):1559-1567DOI: 10.1002/mrm.26772
Han Y et al. Redox Biology. 2018;16: 32-46DOI: 10.1016/j.redox.2018.02.013
Ishimoto Y et al. Molecular and Cellular Biology. 2017;37: 24 e00337-17DOI: 10.1128/MCB.00337-1
Hamed, M. O. Doctoral thesis. Sep 2017DOI: 10.17863/CAM.13853
Xiao L et al. Redox Biology. 2017; 11: 297–311DOI: 10.1016/j.redox.2016.12.022
Ward MS et al. Scientific Reports 2017. 7: 15190DOI: 10.1038/s41598-017-15589-x
Galaretta CI et al. American Journal of Physiology – Renal Physiology. 2015;308(10): F1155-66DOI: 10.1152/ajprenal.00591.2014
Dare AJ et al. Redox Biology. 2015; 5: 163–168DOI: 10.1016/j.redox.2015.04.008
Gu Q et al. Molecular and Cellular Biochemistry. 2015;406(1-2):217-25DOI: 10.1007/s11010-015-2439-6
Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK) cells. Marine A et al. Redox Biology. 2014; 2: 348–357DOI: 10.1016/j.redox.2014.01.014
Reily C. Free Radical Biology and Medicine. 2014; 49:S40DOI: 10.1016/j.freeradbiomed.2010.10.083
Patil NK et al. Federation of American Societies of Experimental Biology. 2013 27:1_supplement, 889.8-889.8
Parajuli N et al. PLoS ONE. 2012;7(11)DOI: 10.1371/journal.pone.0048590
Mitchell T et al. The Journal of Pharmacology and Experimental Therapeutics. 2011;336(3):682-692DOI: 10.1124/jpet.110.176743
Chacko BK et al. Biochemical Journal. 2010; 432(Pt 1): 9–19DOI: 10.1042/BJ20100308
Gao P et al. Clinical Science (London, England: 1979). 2020 Mar 13.DOI: 10.1042/CS20200005
Miao J et al. Aging Cell. 2019;00:e13004.DOI: 10.111/acel.13004
Gottwald EM et al. Physiological Reports. 2018;6(7):e13667.DOI: 10.14814/phy2.13667
Liu X et al. Magnetic Resonance in Medicine. 2018;79(3):1559-1567.DOI: 10.1002/mrm.26772
Han Y et al. Redox Biology. 2018;16: 32-46.DOI: 10.1016/j.redox.2018.02.013
Ishimoto Y et al. Molecular and Cellular Biology. 2017;37: 24 e00337-17.DOI: 10.1128/MCB.00337-1
Hamed, M. O. Doctoral thesis. Sep 2017.DOI: 10.17863/CAM.13853
Xiao L et al. Redox Biology. 2017; 11: 297–311.DOI: 10.1016/j.redox.2016.12.022
Ward MS et al. Scientific Reports 2017. 7: 15190.DOI: 10.1038/s41598-017-15589-x
Galaretta CI et al. American Journal of Physiology – Renal Physiology. 2015;308(10): F1155-66.DOI: 10.1152/ajprenal.00591.2014
Dare AJ et al. Redox Biology. 2015; 5: 163–168.DOI: 10.1016/j.redox.2015.04.008
Gu Q et al. Molecular and Cellular Biochemistry. 2015;406(1-2):217-25.DOI: 10.1007/s11010-015-2439-6
Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK) cells.. Marine A et al. Redox Biology. 2014; 2: 348–357.DOI: 10.1016/j.redox.2014.01.014
Reily C. Free Radical Biology and Medicine. 2014; 49:S40.DOI: 10.1016/j.freeradbiomed.2010.10.083
Patil NK et al. Federation of American Societies of Experimental Biology. 2013 27:1_supplement, 889.8-889.8
Parajuli N et al. PLoS ONE. 2012;7(11).DOI: 10.1371/journal.pone.0048590
Mitchell T et al. The Journal of Pharmacology and Experimental Therapeutics. 2011;336(3):682-692. DOI:10.1124/jpet.110.176743
Chacko BK et al. Biochemical Journal. 2010; 432(Pt 1): 9–19.DOI: 10.1042/BJ20100308
METABOLIC HEALTH (20)
Fink B et al. Free Radical Research. 2020 Apr 24:1-8DOI: 10.1080/10715762.2020.1754409
Walenna NF et al. Journal Biological Chemistry. 2020 Jan 28DOI: 10.1074/jbc.RA119.010683
Marin-Royo G et al. The Journal of the Federation of American Societies for Experimental Biology. 2019DOI: 10.1096/fj.201900347RR
Mitochondrial targeting of antioxidants alters pancreatic acinar cell bioenergetics and determines cell fate. Armstrong JA et al. International Journal of Molecular Sciences. 2019;20(7), 1700DOI: https://www.mdpi.com/1422-0067/20/7/1700
Escribano-Lopez I et al. Cellular Physiology & Biochemistry. 2019;52(2):186-197DOI: 10.33594/000000013
The impact of age and sex on body composition and glucose sensitivity in C57Bl/6J mice. Reynolds TH et al. Physiological Reports. 2019;7(3):e13995DOI: 10.14814/phy2.13995
Imai Y et al. Pharmacology Research & Perspectives. 2018;6(3):e00393DOI: 10.1002/prp2.393
Escribano-López I et al. Free Radical Biology and Medicine. 2018;120(1): S79-S80DOI: 10.1016/j.freeradbiomed.2018.04.263
Ju L et al. Oncotarget. 2017; 8(59): 99931–99939DOI: 10.18632/oncotarget.21965
Fink BD et al. Pharmacology Research & Perspectives. 2017;5(2): e00301DOI: 10.1002/prp2.301
Escribano-Lopez et al. Redox Biology. 2016; 10: 200–205DOI: 10.1016/j.redox.2016.10.017
Coudray C et al. British Journal of Nutrition. 2016; 115(7):1155-66DOI: 10.1017/S0007114515005528
Fouret G et al. Biochimica et Biophys Acta (BBA) - Bioenergetics. 2015; 1847(10):1025-35DOI: 10.1016/j.bbabio.2015.05.019
Li J et al. Scientific Reports. 2015;5:12724DOI: 10.1038/srep12724
Huang W et al. Mediators of Inflammation. 2015: 901780DOI: 10.1155/2015/901780
Fink BD et al. The Journal of Pharmacology and Experimental Therapeutics. 2014; 351(3): 699–708DOI: 10.1124/jpet.114.219329
Feillet-Coudray C et al. Free Radical Research. 2014; 48(10):1232-46DOI: 10.3109/10715762.2014.945079
Wang Q et al. PLoS One. 2013;8(6): e66417DOI: 10.1371/journal.pone.0066417
Mercer JR et al. Free Radical Biology and Medicine. 2012;52(5):841-9DOI: 10.1016/j.freeradbiomed.2011.11.026
Lim S et al. Cellular Physiology and Biochemistry. 2011;28(5):873-86DOI: 10.1159/000335802
MUSCULOSKELETAL HEALTH AND EXERCISE (14)
MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men. Pham T et al. European Journal of Applied Physiology. 2020 May 26DOI: 10.1007/s00421-020-04396-4
Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function. Thoma A et al. Biogeronology. 2020 May 23DOI: 10.1007/s10522-020-09838-x
Kang L et al. Cell Proliferation. 2020 Feb 5;e12779DOI: 10.1111/cpr.12779
Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. Hancock M et al. Elife. 2018;7. pii: e41044DOI: 10.7554/eLife.41044
MitoQ supplementation improves leg-extension power in healthy late middle-aged and older adults. Bispham NZ et al. The Journal of the Federation of American Societies for Experimental Biology. 2017; 31 (1) (suppl) abs. lb852
Farnaghi S et al. The Journal of the Federation of American Societies for Experimental Biology. 2017;31(1):356-367DOI: 10.1096/fj.201600600R
Mitochondria‐specific antioxidant supplementation does not influence endurance exercise training‐induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake. Shill DD et al. J Physiol. 2016; 594(23): 7005–7014DOI: 10.1113/JP272491
Sakellariou GK et al. The Journal of the Federation of American Societies for Experimental Biology. 2016; 30(11): 3771–3785DOI: 10.1096/fj.201600450R
MitoQ supplementation improves motor function and muscle mitochondrial health in old male mice. Justice JN et al. Gerontologist 2015;55(2):163DOI: doi.org/10.1093/geront/gnv535.02
Patková J et al. Cellular Physiology and Biochemistry. 2014;33(5):1439-51DOI: 10.1159/000358709
Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage. Wolff KJ et al. Journal of Orthopaedic Research. 2013; 31(2): 191–196DOI: 10.1002/jor.22223
Mitochondrial electron transport and glycolysis are coupled in articular cartilage. Martin AJ et al. Osteoarthritis and Cartilage. 2012; 20(4): 323–329DOI: 10.1016/j.joca.2012.01.003
MitoQ10 induces adipogenesis and oxidative metabolism in myotube cultures. Nierobisz LS et al. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2011;158(2):125-31DOI: 10.1016/j.cbpb.2010.10.003
Lowes DA et al. Free Radical Research. 2009;43(4):323-8DOI: 10.1080/10715760902736275
SKIN HEALTH (9)
Victorelli S et al. The EMBO Journal. 2019DOI: 10.15252/embj.2019101982
Tamer TM et al. Materials (Basel). 2018;11(4). pii: E569DOI: 10.3390/ma11040569
Protective effect of mitochondrially targeted antioxidant MitoQ on oxidatively stressed fibroblasts. Valachová K et al. L. Chemical Paper. 2018 72: 1223DOI: 10.1007/s11696-017-0359-5
Anti-aging potentials of methylene blue for human skin longevity. Xiong Z-M et al. Scientific Reports. 2017 May. 7; 24DOI: 10.1038/s41598-017-02419-3
Oyewole AO et al. The Journal of the Federation of American Societies for Experimental Biology. 2014;28(1):485-94DOI: 10.1096/fj.13-237008
Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Fisher GJ et al. The American Journal of Pathology. 2009; 174(1): 101–114DOI: 10.2353/ajpath.2009.080599
Cellular response to infrared radiation involves retrograde mitochondrial signalling. Schroeder P et al. Free Radical Biology and Medicine. 2007;43(1):128-35DOI: 10.1016/j.freeradbiomed.2007.04.002
7-Dehydrocholesterol enhances ultraviolet A-induced oxidative stress in keratinocytes: Roles of NADPH oxidase, mitochondria and lipid rafts. Valencia A et al. Free Radical Biology and Medicine. 2006; 41(11): 1704–1718DOI: 10.1016/j.freeradbiomed.2006.09.006
MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Saretzki G et al. Aging Cell. 2003;2(2):141-3DOI: 10.1046/j.1474-9728.2003.00040.x
IMMUNOLOGY (33)
Supinski GS et al. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2009; 297(4): R1095–R1102DOI: 10.1152/ajpregu.90902.2008
Apostolova N et al. Pharmaceutical Research. 2011;28(11):2910-9DOI: 10.1007/s11095-011-0528-0
An investigation of the effects of MitoQ on human peripheral mononuclear cells. Marthandan S et al. Free Radical Research.. 2011;45(3):351-8DOI: 10.3109/10715762.2010.532497
Lowes DA et al. Free Radical Biology and Medicine. 2008;45(11):1559-65DOI: 10.1016/j.freeradbiomed.2008.09.003
Francischetti IM et al. PLoS One. 2014;9(2): e87140DOI: 10.1371/journal.pone.0087140
Dashdorj A et al. BioMed Central Medicine.; 11: 178DOI: 10.1186/1741-7015-11-178
Lowes DA et al. British Journal of Anaesthesia. 2013; 110(3): 472–480DOI: 10.1093/bja/aes577
Zhi L et al. The Journal of Immunology. 2012; 189(4): 1639–1647DOI: 10.4049/jimmunol.1200528
Powell RD et al. The Journal of Trauma and Acute Care Surgery. 2015;78(3):573-9DOI: 10.1097/TA.0000000000000533
Chen S et al. Chinese Critical Care Medicine. 2015;27(2):86-91DOI: 10.3760/cma.j.issn.2095-4352.2015.02.002
Ramsey H et al. International Immunopharmacology. 2014; 23(2): 658–663DOI: 0.1016/j.intimp.2014.10.019
Wiens KE et al. PLoS Pathogens. 2016;12(8):e1005809DOI: 10.1371/journal.ppat.1005809
Spadoni T et al. Annals of the Rheumatic Diseases. 2016;75(2):521.2-521 2016 JulDOI: 10.1136/annrheumdis-2016-eular.3908
Maiti AK et al. Scientific Reports. 2015; 5: 15434DOI: 10.1038/srep15434
Kelly B et al. Journal of Biological Chemistry. 2015; 290(33): 20348–20359DOI: 10.1074/jbc.M115.662114
Fisicaro P et al. Nature Medicine. 2017;23(3):327-336DOI: 10.1038/nm.4275
Ho GT et al. Journal of Crohn’s and Colitis. 2017;11(1):S97DOI: 10.1093/ecco-jcc/jjx002.163
Buskiewicz IA et al. Science Signaling. 2016; 9(456): ra115DOI: 10.1126/scisignal.aaf1933
Webster SJ et al. PLoS Pathogens. 2017; 13(6): e1006383DOI: 10.1371/journal.ppat.1006383
Formentini L et al. Cell Reports. 2017;19(6):1202-1213DOI: 10.1016/j.celrep.2017.04.036
Chu F-F et al. Redox Biology. 2017;11: 144–156DOI: 10.1016/j.redox.2016.11.001
Hu Q et al. Cell Death & Disease. 2018; 9(3): 403DOI: 10.1038/s41419-018-0436-x
Ho GT et al. Mucosal Immunology. 2018;11(1):120-130DOI: 10.1038/mi.2017.31
Keck F et al. Virulence. 2018DOI: 10.1080/21505594.2018.1509668
Mitochondrial-targeted antioxidant MitoQ prevents E. coli lipopolysaccharide-induced accumulation of triacylglycerol and lipid droplets biogenesis in epithelial cells. Fock E et al. Journal of Lipids. 2018;5745790DOI: 10.1155/2018/5745790
Budd R et al. Lupus Science & Medicine. 2019;6DOI: 10.1136/lupus-2019-lsm.38
Keck F et al. Viruses. 2018;10(11). pii: E606DOI: 10.3390/v10110606
Zhang et al. Mediators of Inflammation. 2020DOI: 10.1155/2020/3276148
The reduced oligomerization of MAVS mediated by ROS enhances the cellular radioresistance. Du et al. Oxidative Medicine and Cellular Longevity. 2020 March 4DOI: 10.1155/2020/2167129
Sen Roy S et al. HIV Medicine. 2019;20. 231-231DOI: 10.1111/hiv.128.14
Fortner et al. Lupus Science & Medicine. 2020;7:e000387DOI: 10.1136/lupus-2020-000387
Tissue-resident macrophages actively suppress IL-1beta release via a reactive prostanoid/IL-10 pathway. Ipseiz N et al. The EMBO Journal. 2020 June 2DOI: 10.15252/embj.2019103454
Codo A et al. SSRN Electronic Journal. 2020 MayDOI: 10.2139/ssrn.3606770
GENETIC HEALTH (8)
Migrino RQ et al. American Journal of Physiology-Heart and Circulatory Physiology. 2011;301(6):H2305-12DOI: 10.1152/ajpheart.00503.2011
Misfolding of short-chain acyl-CoA dehydrogenase leads to mitochondrial fission and oxidative stress. Schmidt SP et al. Molecular Genetics and Metabolism. 2010;100(2):155-62DOI: 10.1016/j.ymgme.2010.03.009
Jauslin ML et al. The Journal of the Federation of American Societies for Experimental Biology. 2003;17(13):1972-4DOI: 10.1096/fj.03-0240fje
Bhattacharjee A et al. Journal of Biological Chemistry. 2016; 291(32): 16644–16658DOI: 10.1074/jbc.M116.727248
Santini E et al. The Journal of Neuroscience. 2015; 35(49): 16213–16220. 10.1523/JNEUROSCI.2246-15.2015
Gallego-Villar L et al. Biochemical and Biophysical Research Communications. 2014;452(3):457-61DOI: 10.1016/j.bbrc.2014.08.091
Polyak E et al. Molecular Genetics and Metabolism. 2018;123(4):449-462DOI: 10.1016/j.ymgme.2018.02.013
Rivera-Barahona A et al. Molecular Genetics and Metabolism. 2017;122(1-2):43-50DOI: 10.1016/j.ymgme.2017.07.009
EYE HEALTH (5)
Vlachantoni D et al. Human Molecular Genetics. 2011; 20(2):322-35DOI: 10.1093/hmg/ddq467
Mustapha NM et al. Journal of Ophthalmology. 2010; 2010: 746978DOI: 10.1155/2010/746978
Vlachantoni D et al. Investigative Ophthalmology & Visual Science. 2006;47(13):5773
Zheng Q et al. Chemical Engineering Journal. 2020 May 23DOI: 10.1016/j.cej.2020.125621
Mitochondrial-targeted antioxidants attenuate TGF-β2 signaling in human trabecular meshwork cells. Rao VR et al. Investigative Ophthalmology & Visual Science. 2019;60:3613-3624DOI: 10.1167/iovs.19-27542
LUNG HEALTH (4)
Jaffer OA et al. American Journal of Respiratory Cell and Molecular Biology. 2015; 52(1): 106–115DOI: 10.1165/rcmb.2013-0519OC
Li R et al. BioMed Research International. 2019DOI: 10.1155/2019/524898
Chen S et al. International Journal of Biological Sciences. 2019 Jun 2;15(7):1440-1451DOI: 10.7150/ijbs.30193
Wiegman CH et al. The Journal of Allergy and Clinical Immunology. 2015; 136(3): 769–780DOI: 10.1016/j.jaci.2015.01.046
REPRODUCTIVE HEALTH AND DEVELOPMENT BIOLOGY (19)
Hobbs CE et al. Pediatrics International. 2008; 50(4): 481-8DOI: 10.1111/j.1442-200X.2008.02705.x
Botting KJ et al. 2016. Proceedings of the Physical Society (1985-1967), PCB334 (2016)
Mitochondria-targeted antioxidant mitoquinone protects post-thaw human sperm against oxidative stress injury. Liu L et al. Zhonghua Nan Ke Xue. 2016;22(3):205-11
Skeffington K et al. Aug 2015. Fetal and Neonatal Physiological Society 42nd Annual meeting: Vancouver
Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish. Fang L et al. Cryobiology. 2014;69(3):386-93DOI: 10.1016/j.cryobiol.2014.09.005
Aljunaidy MM et al. Pharmacological Research.;134:332-342DOI: 10.1016/j.phrs.2018.05.006
Sukjamnong S et al. Scientific Reports. 2018; 8: 6631DOI: 10.1038/s41598-018-24949-0
Phillips TJ et al. Scientific Reports. 2017;7(1):9079DOI: 10.1038/s41598-017-06300-1
Sukjamnong S et al. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2017;313(2): L416-L423DOI: 10.1152/ajplung.00134.2017
Ding Y et al. International Journal of Molecular Medicine. 2018 Nov 5. [Epub ahead of print]DOI: 10.3892/ijmm.2018.3977
Nuzzo AM et al. The American Journal of Pathology. 2018 Sep 21. pii: S0002-9440(18)30019-1DOI: 10.1016/j.ajpath.2018.07.027
Vaka VR et al. Hypertension. 2018 Jul 16. piiDOI: 10.1161/HYPERTENSIONAHA.118.11290
Ganguly E et al. Frontiers in Physiology. 2019 May 24DOI: 10.3389/fphys.2019.00562
Exposing mouse oocytes to MitoQ during in vitro maturation improves maturation and developmental competence. Hosseinzadeh Shirzeyli M et al. Iranian Journal of Biotechnology. 2019
Zhang J et al. Toxicology and Applied Pharmacology. 2019 Mar 2. pii: S0041-008X(19)30075-4DOI: 10.1016/j.taap.2019.03.001
Autophagy regulates functional differentiation of mammary epithelial cells. Elswood J et al. Autophagy. 2020DOI: 10.1080/15548627.2020.1720427
Marei W et al. Human Reproduction. 2019DOI: 10.1093/humrep/dez161
Ibrahim AA et al. Life Sciences. 2019 Jul 12DOI: 10/1016/j.lfs.2019.116655
Yang Y et al. Antioxidants & Redox Signaling. 2020 Mar 31DOI: 10.1089/ars.2019.7891
TOXICITY SUPPORT (15)
Kalivendi SV et al. Biochemical Journal. 2005; 389(Pt 2): 527–539DOI: 10.1042/BJ20050285
Vergeade A et al. Free Radical Biology and Medicine. 2010;49(5):748-56DOI: 10.1016/j.freeradbiomed.2010.05.024
Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Rodriguez-Cuenca S et al. Free Radical Biology and Medicine. 2010;48(1):161-72DOI: 10.1016/j.freeradbiomed.2009.10.039
Whiteman M et al. Antioxidant & Redox Signaling. 2008;10(3):641-50DOI: 10.1089/ars.2007.1879
Mukhopadhyay P et al. Free Radical and Medicine. 2012;52(2): 497–506DOI: 10.1016/j.freeradbiomed.2011.11.001
Ojano-Dirain CP et al. Laryngoscope. 2012;122(11):2543-8DOI: 10.1002/lary.23593
Wani WY et al. Neuropharmacology. 2011;61(8):1193-201DOI: 10.1016/j.neuropharm.2011.07.008
Jurkuvenaite A et al. Free Radical Biology and Medicine. 2015; 85: 83–94DOI: 10.1016/j.freeradbiomed.2015.03.039
Ng MR et al. Otolaryngology-Head and Neck Surgery. 2015;152(4):729-33DOI: 10.1177/0194599814564934
Jadidian A et al. Otology & Neurotology. 2015;36(3):526-30DOI: 10.1097/MAO.0000000000000517
Ojano-Dirain CP et al. Otology & Neurotology. 2014;35(3):533-9DOI: 10.1097/MAO.0000000000000192
Dirain CO et al. Otology & Neurotology. 2018;39(1):111-118DOI: 10.1097/MAO.0000000000001638
Maiti AK et al. Neurotoxicity Research. 2017;31(3):358-372DOI: 10.1007/s12640-016-9692-7
Tate AD et al. Otolaryngology-Head and Neck Surgery. 2017;156(3):543-548DOI: 10.1177/0194599816678381
Guigni BA et al. American Journal of Physiology-Cell Physiology. 2018 Sep 12DOI: 10.1152/ajpcell.00002.2018
REDOX BIOLOGY (31)
Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. Echtay KS et al. Journal of Biological Chemistry. 2002;277(49):47129-35DOI: 10.1074/jbc.M208262200
Mitochondrial redox state regulates transcription of the nuclear-encoded mitochondrial protein manganese superoxide dismutase: A proposed adaptive response to mitochondrial redox imbalance. Kim A et al. Free Radical Biology and Medicine. 2005;38(5):644-54DOI: 10.1016/j.freeradbiomed.2004.10.030
Dhanasekaran A et al. Journal of Biological Chemistry. 2004;279(36):37575-87DOI: 10.1074/jbc.M404003200
Schäfer M et al. Circulation Research. 2003;92(9):1010-5DOI: 10.1161/01.RES.0000070882.81508.FC
Redox regulation of cAMP-responsive element-binding protein and induction of manganous superoxide dismutase in nerve growth factor-dependent cell survival. Bedogni B et al. Journal of Biological Chemistry. 2003;278(19):16510-9DOI: 10.1074/jbc.M301089200
Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. James AM et al. Journal of Biological Chemistry. 2005;280(22):21295-312DOI: 10.1074/jbc.M501527200
A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signalling of HIF-1alpha. Sanjuán-Pla A et al. FEBS Letters. 2005;579(12):2669-74DOI: 10.1016/j.febslet.2005.03.088
Protective role of MnSOD and redox regulation of neuronal cell survival. Galeotti T et al. Biomedicine & Pharmacotherapy. 2005;59(4):197-203DOI: 10.1016/j.biopha.2005.03.002
OxLDL enhances L-type Ca2+ currents via lysophosphatidylcholine-induced mitochondrial reactive oxygen species (ROS) production. Fearon IM. Cardiovascular Research. 2006;69(4):855-64DOI: 10.1016/j.cardiores.2005.11.019
Pletjushkina OY et al. Biochemistry (Moscow). 2006;71(1):60-7DOI: 10.1134/S0006297906010093
Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion. Pletjushkina OY et al. Cell Death & Differentiation. 2005;12:1442–1444DOI: 10.1038/sj.cdd.4401685
Koopman WJ et al. Cellular Metabolism. 2005;288(6):C1440-50DOI: 10.1152/ajpcell.00607.2004
Respiratory chain deficiency slows down cell-cycle progression via reduced ROS generation and is associated with a reduction of p21CIP1/WAF1. Schauen M et al. Journal of Cellular Physiology. 2006;209(1):103-12DOI: 10.1002/jcp.20711
Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Chernyak BV et al. Biochimica et Biophysica Acta (BBA) – Bioenergetics . 2006;1757(5-6):525-34DOI: 10.1016/j.bbabio.2006.02.019
Flow dilation in rat small mesenteric arteries is mediated by hydrogen peroxide generated from CYP epoxygenases and xanthine oxidase. Ngai CY. The Open Circulation and Vascular Journal. 2009 Apr. 2(1):15-22DOI: 10.2174/1877382600902010015
Doughan AK et al. Antioxidants & Redox Signaling. 2007; 9(11):1825-36DOI: 10.1089/ars.2007.1693
Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. O'Malley Y et al. Journal of Biological Chemsitry. 2006;281(52):39766-75DOI: 10.1074/jbc.M608268200
TNFα-induced lysosomal membrane permeability is downstream of MOMP and triggered by caspase-mediated NDUFS1 cleavage and ROS formation. Huai J et al. Journal of Cell Science. 2013;126(Pt 17):4015-25DOI: 10.1242/jcs.129999
Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Lee S et al. Cell Research. 2011;21(5):817-34DOI: 10.1038/cr.2011.55
Role of mitochondrial reactive oxygen species in osteoclast differentiation. Srinivasan S et al. Annals of the New York Academy of Sciences. 2010; 1192(1): 245–252DOI: 10.1111/j.1749-6632.2009.05377.x
Hämäläinen RH et al. Cell Reports. 2015; 11(10): 1614–1624DOI: 10.1016/j.celrep.2015.05.009
Huang W-Y et al. PLoS One. 2013;8(11):e81546DOI: 10.1371/journal.pone.0081546
Differential modulation of ROS signals and other mitochondrial parameters by the antioxidants MitoQ, resveratrol and curcumin in human adipocytes. Hirzel E et al. Journal of Receptors and Signal Transduction. 2013; 33(5):304-12DOI: 10.3109/10799893.2013.822887
Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Kim JH et al. Cell Death and Differentiation. 2018 Jul 24DOI: 10.1038/s41418-018-0165-9
Mitochondria-targeted molecules determine the redness of the zebra finch bill. Cantarero A et al. Biology Letters. 2017;13(10). pii: 20170455DOI: 10.1098/rsbl.2017.0455
Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence. Tsai IC et al. Journal of Molecular and Cellular Cardiology. 2016;98:18-27DOI: 10.1016/j.yjmcc.2016.07.001
Ammonia sensitive SLC4A11 mitochondrial uncoupling reduces glutamine induced oxidative stress. Ogando DG et al. Redox Biology. 2019;26:101260DOI: 10.1016/j.redox.2019.101260
Redox-regulation and life-history trade offs: Scavenging mitochondrial ROS improves growth in a wild bird. Velando A et al. Scientific Reports. 2019;9(1)DOI: 10.1038/s41598-019-3853335-5
Detection of 8-oxoguanine and apurinic/apyrimidinic sites using a fluorophore-labeled probe with cell-penetrating ability. Kang DM et al. BMC Molecular and Cell Biology. 2019 Nov 27;20(1):54DOI: 10.1186/s12860-019-236
A mitochondria-targeted antioxidant affects the carotenoid-based plumage of red crossbills. Cantarero A et al. bioRxiv. 2019DOI: 10.1101/839670
Olesen M et al. Redox Biology. 2020 May 5DOI: 10.1016/j.redox.2020.101558
CELLULAR BIOLOGY AND MECHANISM OF ACTION (42)
Kelso GF et al. Annals of the New York Academy of Sciences. 2002; 959:263-74DOI: 10.1111/j.1749-6632.2002.tb02098.x
Kelso GF et al. Journal of Biological Chemistry. 2001;276(7):4588-96DOI: 10.1074/jbc.M009093200
Delivery of bioactive molecules to mitochondria in vivo. Smith RA et al. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(9):5407-12DOI: 10.1073/pnas.0931245100
Effect of oxidative stress on dynamics of mitochondrial reticulum. Pletjushkina OY et al. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2006;1757(5-6):518-24DOI: 10.1016/j.bbabio.2006.03.018
Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. Asin-Cayuela J et al. FEBS Letters. 2004;571(1-3):9-16DOI: 10.1016/j.febslet.2004.06.045
Interaction of the mitochondrial-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. James AM et al. The Journal of Biological Chemistry. 2007; 282(20):14708-14718DOI: 10.1074/jbc.M611463200
Quantitation and metabolism of mitoquinone, a mitochondria-targeted antioxidant, in rat by liquid chromatography/tandem mass spectrometry. Li Y et al. Rapid Communications in Mass Spectrometry. 2007; 21(13):1958-64DOI: 10.1002/rcm.3048
The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Magwere T et al. Mechanisms of Ageing and Development. 2006;127(4):356-70DOI: 10.1016/j.mad.2005.12.009
Thioredoxin 1 and thioredoxin 2 have opposed regulatory functions on hypoxia-inducible factor-1alpha. Zhou J et al. Journal of Biological Chemistry. 2007;282(10):7482-90DOI: 10.1074/jbc.M608289200
Jarvis RM et al. Free Radical Research. 2007;41(9):1041-6DOI: 10.1080/10715760701557153
Transport and metabolism of MitoQ10, a mitochondria-targeted antioxidant, in Caco-2 cell monolayers. Li Y et al. Journal of Pharmacy and Pharmacology. 2007;59(4):503-11DOI: 10.1211/jpp.59.4.0004
Jou MJ et al. Journal of Pineal Research. 2007;43(4):389-403DOI: 10.1111/j.1600-079X.2007.00490.x
Role of calcium and cyclophilin D in the regulation of mitochondrial permeabilization induced by glutathione depletion. Lu C et al. Biochemical and Biophysical Research Communications. 2007 Nov;363(3):572-7DOI: 10.1016/j.bbrc.2007.08.196
Is antioxidant potential of the mitochondrial targeted ubiquinone derivative MitoQ conserved in cells lacking mtDNA?. Lu C et al. Antioxidants & Redox Signaling. 2008;10(3):651-60DOI: 10.1089/ars.2007.1865
Quijano C et al. American Journal of Physiology – Heart and Circulatory Physiology. 2007;293(6):H3404-14DOI: 10.1152/ajpheart.00761.2007
Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Ross MF et al. Biochemical Journal. 2008;411(3):633-45DOI: 10.1042/BJ20080063
Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments. Antonenko YN et al. Journal of Membrane Biology. 2008;222(3):141-9DOI: 10.1007/s00232-008-9108-6
Interaction of positively charged ubiquinone analog (MitoQ10) with DT-diaphorase from liver mitochondria. Kargin VI et al. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology (2008) 2: 33DOI: 10.1007/s11827-008-1006-7
Transport and metabolism of some cationic ubiquinone antioxidants (MitoQn) in Caco-2 cell monolayers. Li Y et al. European Journal of Drug Metabolism and Pharmacokinetics. 2008;33(4):199-204DOI: 10.1007/BF03190873
Cations SkQ1 and MitoQ accumulated in mitochondria delay opening of ascorbate/FeSO4-induced nonspecific pore in the inner mitochondrial membrane. Khailova LS et al. Biochemistry (Moscow). 2008;73(10):1121-4DOI: 10.1134/S0006297908100088
Kinetic analysis of permeation of mitochondria-targeted antioxidants across bilayer lipid membranes. Rokitskaya TI et al. Journal of Membrane Biology. 2008;224(1-3):9-19DOI: 10.1007/s00232-008-9124-6
Electrical relaxation experiments with bilayer lipid membranes in the presence of cationic quinones. Rokitskaya T et al. Biophysical Journal 2009 Feb. 96(3) 663ADOI: 10.1016/j.bpj.2008.12.3505
Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells. Fink BD et al. PLoS One. 2009 Jan. 4(1):e4250DOI: 10.1371/journal.pone.0004250
The mitochondrial antioxidants MitoE2 and MitoQ10 increase mitochondrial Ca2+ load upon cell stimulation by inhibiting Ca2+ efflux from the organelle. Leo S et al. Annals of the New York Academy of Sciences. 2008; 1147: 264–274DOI: 10.1196/annals.1427.019
Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Plecitá-Hlavatá L et al. The International Journal of Biochemistry & Cell Biology. 2009;41(8-9):1697-707DOI: 10.1016/j.biocel.2009.02.015
Chain-breaking antioxidant activity of reduced forms of mitochondria-targeted quinones, a novel type of geroprotectors. Roginsky VA et al. Aging (Albany NY). 2009; 1(5): 481–489DOI: 10.18632/aging.100049
Porteous CM et al. Biochimica et Biophysica Acta (BBA) – General Subjects. 2010;1800(9):1009-17DOI: 10.1016/j.bbagen.2010.06.001
Synthesis and characterization of MitoQ and idebenone analogues as mediators of oxygen consumption in mitochondria. Duveau DY et al. Bioorganic & Medicinal Chemistry. 2010;18(17):10.1016/j.bmc.2010.06.104DOI: 10.1016/j.bmc.2010.06.104
Interaction of yeast mitochondria with fatty acids and mitochondria-targeted lipophilic cations. Sukhanova EI et al. Biochemistry (Moscow). 2010;75(2):139-44DOI: 10.1134/S000297910020033
Raghunathan VK et al. Biomaterials. 2013;34(14):3559-70DOI: 10.1016/j.biomaterials.2013.01.085
Mitochondrially targeted compounds and their impact on cellular bioenergetics. Reily C et al. Redox Biology. 2013; 1(1): 86–93DOI: 10.1016/j.redox.2012.11.009
Bioenergetic effects of mitochondrial-targeted coenzyme Q analogs in endothelial cells. Fink BD et al. The Journal of Pharmacology and Experimental Therapeutics. 2012; 342(3): 709–719DOI: 10.1124/jpet.112.195586
Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes. Rokitskaya TI et al. Bioelectrochemistry. 2016; 111:23-30DOI: 10.1016/j.bioelechem.2016.04.009
On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response. Bonet-Ponce L et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2015;1852(7):1400-9DOI: 10.1016/j.bbadis.2015.03.006
Rogers C et al. Free Radical Biology and Medicine. 2014; 67:330-41DOI: 10.1016/j.freeradbiomed.2013.11.012
Porteous CM et al. Biochimica et Biophysica Acta (BBA) – General Subjects. 2013;1830(6):3458-65DOI: 10.1016/j.bbagen.2013.02.005
Changes in the turnover of the cellular proteome during metabolic reprogramming: A role for mtROS in proteostasis. Garcia A et al. Journal of Proteome Research. 2019 Jul 2019DOI: 10.1021/acs.jproteome.9b00239
Slobodnyuk K et al. Cell Death & Disease. 2019 May 15;10(6):376DOI: 10.1038/s41419-019-1607-0
Ravasz D et al. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2018 May 7. pii: S0005-2728(18)30105-1DOI: 10.1016/j.bbabio.2018.05.002
Vizioli MG et al. Genes & Development. 2020 Jan 30DOI: 10.1101/gad.331272.119
Subversion of host cell mitochondria by RSV to favour virus production is dependent on inhibition of mitochondrial complex I and ROS generation. Hu M et al. Cells. 2019;8, 1417DOI: 10.3390/cells8111417
Gouzos M et al. Frontiers in Cellular and Infection Microbiology. 2020 19 MarchDOI: 10.3389/fcimb.2020.00110
REVIEWS, EDITORIALS AND LETTERS (6)
Targeting mitochondrial fitness as a strategy for healthy vascular aging. Rossman et al. Clin Sci (Lond). 2020 134 (12): 1491-1519DOI: 10.1042/CS20190559
Mitochondria-targeted nutraceuticals in sports medicine: A new perspective. Ostojic SM. Res Sports Med. 2016;25(1):91-100DOI: 10.1080/15438627.2016.1258646
Have no fear, MitoQ10 is here. Barbato JC. Hypertension. 2009;54(2):222-3DOI: 10.1161/HYPERTENSIONAHA.109.135533
MitoQ- A mitochondria-targeted antioxidant. Tauskela JS et al. IDrugs. 2007;10(6):399-412
Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Smith RA et al. Annals of the New York Academy of Sciences. 2011;1201:96-103DOI: 10.1111/j.1749-6632.2010.05627.x
The effect of MitoQ on aging-related biomarkers: A systematic review and meta-analysis. Braakhuis A et al. Oxidative Medicine and Cellular Longevity. Volume 2018, Article ID 8575263DOI: 10.1155/2018/8575263