Founded in science, studied around the world, clinically tested.

MitoQ encourages the scientific community to explore and discover the benefits of our ingredient Mitoquinol Mesylate.


19 clinical trials, 750+ peer-reviewed scientific papers, and over $60 million invested in a broad range of independent studies.


Harvard University, UCLA, University of Cambridge and more leading institutions around the world have studied MitoQ’s cellular health optimization.


Our product development team continues to explore the leading edge of cellular health science, resulting in over 60 global patents for our molecular technology.

Meet our MitoQ science experts

a headshot of Professor Mike Murphy in cell shape


Ph.D., MitoQ co-founder and Professor of Mitochondrial Redox Biology at the University of Cambridge

a headshot of Dr Richard Siow in cell shape


Ph.D., Director of Ageing Research at King’s College London, Honorary Secretary General of European Society of Preventive Medicine

a headshot of Professor Marcia Haigis in cell shape


Ph.D., Professor of Cell Biology at Harvard Medical School, National Academy of Medicine's Emerging Leader in Health and Medicine

a headshot of Professor Doug Seals in cell shape


Ph.D., Professor in Integrative Physiology at the University of Colorado Boulder

a headshot of Dr Molly Maloof in cell shape


M.D., Author, Entrepreneur, Lecturer, Medical advisor

750+ independent high-impact, peer-reviewed journals, and 19 clinical trials. Here are some highlights.


Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults

Rossman MJ et al. Hypertension. 71:1056-1063 (2018)

DOI: DOI: 10.1161/HYPERTENSIONAHA.117.10787 source

MitoQ decreases free radical production by mitochondria, and significantly supports arterial function in older adults and therefore the health of the arteries. In this clinical trial it was confirmed that: MitoQ greatly improved the ability of arteries to dilate (by 42%). MitoQ significantly supports the health of aorta and factors related to heart lipid metabolism.

Read the summary


The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage

Williamson et al. REDOX Biology

DOI: DOI: 10.1016/j.redox.2020.101673 Source

High-intensity exercise increases our respiration rate and can lead to oxidative stress. The free radicals that are produced during exercise are known to damage our DNA. This study showed that after 3 weeks of chronic supplementation, 20 mg/day of MitoQ was able to protect against exercise-induced DNA damage in young healthy men (20-30 years old). MitoQ significantly reduced both nuclear and mitochondrial DNA damage in the blood and in muscle tissue after intense exercise.

Read the study


Mitochondria-targeted antioxidant supplementation improves 8km time trial performance in middle-aged trained male cyclist

Broome SC et al. J. Int. Soc. Sports Nutr. 18, 58 (2021).

DOI: DOI: 10.1186/s12970-021-00454-0 source

The study showed that after 4 weeks of MitoQ supplementation, the mean completion time for a time trial was 10.8 seconds faster and an increase of 10 watts of power. MitoQ supplementation may be an effective nutritional strategy to attenuate exercise-induced increases in oxidative damage to lipids and improve cycling performance.

Read the summary


The influence of acute high dose MitoQ on urinary kidney injury markers in healthy adults

Linder BA et al. The FASEB Journal. 36, S1 (2022).

DOI: DOI: 10.1096/fasebj.2022.36.S1.L7715 source

Results found that acute, high-dose MitoQ supplementation did not result in high concentrations of kidney injury biomarkers compared to placebo samples. Preliminary evidence is that ongoing MitoQ use in the normal range (10mg-20mg) supports kidney health.

Read the summary


MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle‑aged men

Pham et al. European Journal of Applied Physiology

DOI: DOI: 10.1007/s00421-020-04396-4 Source

Mitochondria are the main source of oxidative stress in our bodies. Oxidative stress is caused by an imbalance of free radicals and our levels of antioxidants. Over time, oxidative stress can lead to cell damage and have flow-on effects for our health. This study compared the effects of 20 mg/day MitoQ and 200 mg/day CoQ10 on biomarkers of mitochondrial health and oxidative stress in healthy middle-aged men (40-60 years old). After six weeks of supplementation, MitoQ was found to be 24% more effective than CoQ10 at reducing hydrogen peroxide levels in the mitochondria during states of stress. Unlike CoQ10, MitoQ supplementation also increased levels of the important internal antioxidant, catalase, by 36%.

Read the study


MitoQ supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men

Broome et al. REDOX Biology

DOI: DOI: 10.1016/j.redox.2022.102341 Source

Regular high-intensity exercise leads to adaptations in our bodies and mitochondria that help improve performance and recovery. This study showed that in untrained middle-aged men, just 10 days of supplementation of 20mg/day MitoQ improved exercise performance in middle-aged men (35-55 years old). MitoQ significantly increased peak power generation during a 20km cycling trial compared to placebo. This result was accompanied by an increase in skeletal muscle PGC1α mRNA expression, a gene activator associated with the regulation of mitochondrial health and function.

Read the study

More studies

*Intended for a researcher audience, for research purposes only


HIF-1α promotes cellular growth in lymphatic endothelial cells exposed to chronically elevated pulmonary lymph flow. Boehme JT et al. Scientific Reports. 2016DOI: 10.1038/s41598-020-80882-1 Source

Mitoquinone (MitoQ) Inhibits Platelet Activation Steps by Reducing ROS Levels. Méndez D et al. International Journal of Molecular Sciences. 2021DOI: 10.3390/ijms21176192 Source

Effect of treadmill exercise and MitoQ treatment on vascular function in D-galactose-induced senescent mice. Kim DW. 2020DOI: 10.24985/kjss.2019.30.4.689 Source

Mitoquinone attenuates vascular calcification by suppressing oxidative stress and reducing apoptosis of vascular smooth muscle cells via the Keap1/Nrf2 pathway. Cui, L et al. Free Radical Biology and Medicine. 2020DOI: 10.1016/j.freeradbiomed.2020.09.028 Source

Doxorubicin-Induced Oxidative Stress and Endothelial Dysfunction in Conduit Arteries Is Prevented by Mitochondrial-Specific Antioxidant Treatment. Clayton ZS et al. JACC. CardioOncology. 2021DOI: 10.1016/j.jaccao.2020.06.010 Source

Mitochondrial reactive oxygen species scavenging attenuates thrombus formation in a murine model of sickle cell disease. Annarapu GK et al. Journal of thrombosis and haemostasis: JTH. 2022DOI: 10.1111/jth.15298 Source

Reactive Oxygen Species are Essential for Placental Angiogenesis During Early Gestation. Yang Y et al. Oxidative medicine and cellular longevity. 2014DOI: 10.1155/2022/4290922 Source

Mitoquinone ameliorates cigarette smoke-induced airway inflammation and mucus hypersecretion in mice. Yang D et al. International Immunopharmacology. 2021DOI: 10.1016/j.intimp.2020.107149 Source

Autophagy-mitophagy induction attenuates cardiovascular inflammation in a murine model of Kawasaki disease vasculitis. Marek-Iannucci S et al. JCI Insight. 2021DOI: 10.1172/jci.insight.151981 Source

MicroRNA-210-mediated mtROS confer hypoxia-induced suppression of STOCs in ovine uterine arteries. Hu XQ et al. British Journal of Pharmacology. 2022DOI: 10.1111/bph.15914 Source

Mitochondrial-targeted antioxidant supplementation for improving age-related vascular dysfunction in humans: A study protocol. Murray K.O. et al. Frontiers in Physiology. 2022DOI: 10.3389/fphys.2022.980783 Source

Acute mitochondrial antioxidant intake improves endothelial function, antioxidant enzyme activity, and exercise tolerance in patients with peripheral artery disease. Park SY et al. American Journal of Physiology. Heart and Circulatory Physiology. 2020DOI: 10.1152/ajpheart.00235.2020 Source

Effect of Combined Endurance Training and MitoQ on Cardiac Function and Serum Level of Antioxidants, NO, miR-126, and miR-27a in Hypertensive Individuals. Masoumi-Ardakani et al. BioMed Research International. 2022DOI: 10.1155/2022/8720661 Source

Vasodilatory and vascular mitochondrial respiratory function with advancing age: Evidence of a free radically-mediated link in the human vasculature. Park SH et al. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2020DOI: 10.1152/ajpregu.00268.2019 Source

Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Rossman MJ et al. Hypertension (Dallas, Tex.: 1979). 2018DOI: 10.1161/HYPERTENSIONAHA.117.10787 Source

Reactive oxygen species induced Ca2+ influx via TRPV4 and microvascular endothelial dysfunction in the SU5416/hypoxia model of pulmonary arterial hypertension. Suresh K et al. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2020DOI: 10.1152/ajplung.00430.2017 Source

Age-related endothelial dysfunction in human skeletal muscle feed arteries: the role of free radicals derived from mitochondria in the vasculature. Park S Y et al. Acta Physiologica (Oxford, England). 2018DOI: 10.1111/apha.12893 Source

Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. Gioscia-Ryan RA et al. Journal of Applied Physiology (Bethesda, Md.: 1985). 2018DOI: 10.1152/japplphysiol.00670.2017 Source

Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice. Gioscia-Ryan RA et al. Aging (Albany NY). 2019DOI: 10.18632/aging.101099 Source

Mitochondria-targeted antioxidant MitoQ intercepts superoxide radical formation under acute hypoxia: Evaluation of the oxidative stress in murine pulmonary arterial smooth muscle cells by electron paramagnetic resonance spectroscopy. Scheibe S et al. Free Radical Biology and Medicine. 2018DOI: 10.1016/j.freeradbiomed.2016.04.106 Source

Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress. Ma S et al. American Journal of Hypertension. 2016DOI: 10.1093/ajh/hpt225 Source

Redox signaling via oxidative inactivation of PTEN modulates pressure-dependent myogenic tone in rat middle cerebral arteries. Gebremedhin D et al. PLoS One. 2012DOI: 10.1371/journal.pone.0068498 Source

Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes. Mackenzie RM et al. Clinical Science. 2014DOI: 10.1042/CS20120239 Source

Evidence for a relationship between mitochondrial Complex I activity and mitochondrial aldehyde dehydrogenase during nitroglycerin tolerance: Effects of mitochondrial antioxidants. Garcia-Bou R et al. Biochim Biophys Acta (BBA)-Bioenergetics. 2013DOI: 10.1016/j.bbabio.2012.02.013 Source

Complex I dysfunction and tolerance to nitroglycerin: an approach based on mitochondrial-targeted antioxidants. Esplugues JV et al. Circulation Resarch. 2012DOI: 10.1161/01.RES.0000250430.62775.99 Source


Prohibitin-1 Is a Dynamically Regulated Blood Protein With Cardioprotective Effects in Sepsis. Mattox TA et al. Journal of the American Heart Association. 2021DOI: 10.1161/JAHA.120.019877 Source

Ceramide modulates electrophysiological characteristics and oxidative stress of pulmonary vein cardiomyocytes. Huang SY et al. European Journal of Clinical Investigation. 2022DOI: 10.1111/eci.13690 Source

[Inhibition of mitochondrial reactive oxygen species reduces high glucose-induced pyroptosis and ferroptosis in H9C2 cardiac myocytes]. Wang J et al. Nan Fang Yi Ke Da Xue Xue Bao = Journal of Southern Medical University. 2021DOI: 10.12122/j.issn.1673-4254.2021.07.03 Source

mTOR contributes to endothelium-dependent vasorelaxation by promoting eNOS expression and preventing eNOS uncoupling. Wang Y et al. Communications Biology. 2022DOI: 10.1038/s42003-022-03653-w Source

Endurance training and MitoQ supplementation increases PERM1 and SMYD1 gene expression and improves hemodynamic parameters in cardiac muscle of male Wistar rats. Mahboube ST et al. 2022DOI: 10.21203/ Source

Mitochondrial targeted antioxidants, mitoquinone and SKQ1, not vitamin C, mitigate doxorubicin-induced damage in H9c2 myoblast: pretreatment vs. co-treatment. Sacks B et al. BMC Pharmacology and Toxicology. 2021DOI: 10.1186/s40360-021-00518-6 Source

MicroRNA-210 Controls Mitochondrial Metabolism and Protects Heart Function in Myocardial Infarction. Song R et al. Circulation. 2022DOI: 10.1161/CIRCULATIONAHA.121.056929 Source

Mitochondrial Oxidative Stress Induces Cardiac Fibrosis in Obese Rats through Modulation of Transthyretin. Martínez-Martínez E et al. International Journal of Molecular Sciences. 2022DOI: 10.3390/ijms23158080 Source

The Crosstalk between Cardiac Lipotoxicity and Mitochondrial Oxidative Stress in the Cardiac Alterations in Diet-Induced Obesity in Rats - PubMed. Jiménez-González S et al. 2020DOI: 10.3390/cells9020451. Source

The Interplay of Mitochondrial Oxidative Stress and Endoplasmic Reticulum Stress in Cardiovascular Fibrosis in Obese Rats. Souza-Neto FV et al. Antioxidants (Basel, Switzerland). 2021DOI: 10.3390/antiox10081274 Source

Mitochondrial Oxidative Stress Promotes Cardiac Remodeling in Myocardial Infarction through the Activation of Endoplasmic Reticulum Stress. Souza-Neto FV et al. Antioxidants (Basel, Switzerland). 2022DOI: 10.3390/antiox11071232 Source

Effect of mitochondrial-targeted antioxidants on glycaemic control, cardiovascular health, and oxidative stress in humans: A systematic review and meta-analysis of randomized controlled trials. Mason SA et al. Diabetes, Obesity & Metabolism. 2022DOI: 10.1111/dom.14669 Source

Endurance training and MitoQ supplementation improve spatial memory, VEGF expression, and neurogenic factors in hippocampal tissue of rats. Zadeh HJ et al. Journal of Clinical and Translational Research. 2023DOI: 10.18053/jctres.09.202301.001 Source

Chronic mitochondria antioxidant treatment in older adults alters the circulating milieu to improve endothelial cell function and mitochondrial oxidative stress. Murray KO et al. American Journal of Physiology-Heart and Circulatory Physiology. 2023DOI: 10.1152/ajpheart.00270.2023 Source

Cyclovirobuxine D protects against diabetic cardiomyopathy by activating Nrf2-mediated antioxidant responses. Jiang Z et al. Scientific Reports. 2020DOI: 10.1038/s41598-020-63498-3 Source

Regulation of mitochondrial fragmentation in microvascular endothelial cells isolated from the SU5416/hypoxia model of pulmonary arterial hypertension. Suresh K et al. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2019DOI: 10.1152/ajplung.00396.2018 Source

Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice. Goh KY et al. Redox Biology. 2019DOI: 10.1016/j.redox.2019.101100 Source

G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Wang H et al. Translational Research. 2018DOI: 10.1016/j.trsl.2018.04.005 Source

Ice-free cryopreservation of heart valve tissue: The effect of adding MitoQ to a VS83 formulation and its influence on mitochondrial dynamics. Sui Y et al. Cryobiology. 2018DOI: 10.1016/j.cryobiol.2018.01.008 Source

P 165 - The role of mitochondrial reactive oxygen species in the response of the pulmonary vasculature to hypoxia and right heart remodeling. Scheibe S et al. Free Radical Biology and Medicine. 2017DOI: 10.1016/j.freeradbiomed.2017.04.250 Source

Differences in the profile of protection afforded by TRO40303 and mild hypothermia in models of cardiac ischemia/reperfusion injury. Hannson MJ et al. European Journal of Pharmacology. 2015DOI: 10.1016/j.ejphar.2015.04.009 Source

Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. Yancey DM et al. American Journal of Physiology-Heart and Circulatory Physiology. 2015DOI: 10.1152/ajpheart.00638.2014 Source

Mitochondria transmit apoptosis signalling in cardiomyocyte-like cells and isolated hearts exposed to experimental ischemia-reperfusion injury. Neuzil J et al. Redox Report: Communications in Free Radical Research. 2007DOI: 10.1179/135100007X200227 Source

Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Davidson SM et al. Cardiovascular Research. 2012DOI: 10.1093/cvr/cvr349 Source

Resolution of Mitochondrial Oxidative Stress Rescues Coronary Collateral Growth in Zucker Obese Fatty Rats. Fen Pung Y et al. Arteriosclerosis, Thrombosis and Vascular Biology. 2012DOI: 10.1161/ATVBAHA.111.241802 Source

Novel insights into interactions between mitochondria and xanthine oxidase in acute cardiac volume overload. Gladden JD et al. Free Radical Biology and Medicine. 2011DOI: 10.1016/j.freeradbiomed.2011.08.022 Source

Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. Adlam VJ et al. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2005DOI: 10.1096/fj.05-3718com Source


Generation of mitochondrial reactive oxygen species is controlled by ATPase inhibitory factor 1 and regulates cognition. Esparza-Moltó PB et al. PLoS biology. 2021DOI: 10.1371/journal.pbio.3001252 Source

Preeclamptic placentae release factors that damage neurons: implications for foetal programming of disease. Scott H et al. Neuronal Signaling. 2018DOI: 10.1042/NS20180139 Source

The Role of Pink1-Mediated Mitochondrial Pathway in Propofol-Induced Developmental Neurotoxicity. Liang C et al. Neurochemical Research. 2021DOI: 10.1007/s11064-021-03359-1 Source

Accelerated aging of the brain transcriptome by the common chemotherapeutic doxorubicin. Cavalier AN et al. Experimental Gerontology. 2021DOI: 10.1016/j.exger.2021.111451 Source

Mitochondrial Reactive Oxygen Species Mediate Activation of TRPV1 and Calcium Entry Following Peripheral Sensory Axotomy - PubMed. Kievit B. 2022DOI: 10.3389/fnmol.2022.852181 Source

Recent Advances in Molecular Pathways and Therapeutic Implications Targeting Mitochondrial Dysfunction for Alzheimer's Disease. Dhapola R et al. Molecular Neurobiology. 2022DOI: 10.1007/s12035-021-02612-6 Source

Mitigation of CNS oxygen toxicity seizures: evaluating the neuroprotective effects of L-NAME versus Mitoquinone during exposure to 5 ATA O2 in freely behaving Sprague-Dawley rats. Hinojo CM et al. The FASEB Journal. 2022DOI: 10.1096/fasebj.2022.36.S1.R4180 Source

Inhibiting amyloid beta (1-42) peptide-induced mitochondrial dysfunction prevents the degradation of synaptic proteins in the entorhinal cortex. Olajide OJ et al. Frontiers in Aging Neuroscience. 2022DOI: 10.3389/fnagi.2022.960314 Source

Long-term mitochondrial stress induces early steps of Tau aggregation by increasing reactive oxygen species levels and affecting cellular proteostasis. Samluk L et al. Molecular Biology of the Cell. 2022DOI: 10.1091/mbc.E21-11-0553 Source

Perturbed actin cap as a new personalized biomarker in primary fibroblasts of Huntington's disease patients. Gharaba S et al. Frontiers in Cell and Developmental Biology. 2023DOI: 10.3389/fcell.2023.1013721 Source

Apolipoprotein E Polymorphism Impacts White Matter Injury Through Microglial Phagocytosis After Experimental Subarachnoid Hemorrhage. Li C et al. Neuroscience. 2023DOI: 10.1016/j.neuroscience.2023.05.020 Source

Quinones as Neuroprotective Agents. Cores Á et al. Antioxidants. 2023DOI: 10.3390/antiox12071464 Source

A mitochondrial-targeted antioxidant (MitoQ) improves motor coordination and reduces Purkinje cell death in a mouse model of ARSACS. Márquez BT et al. Neurobiology of Disease. 2023DOI: 10.1016/j.nbd.2023.106157 Source

CREB Protects against Temporal Lobe Epilepsy Associated with Cognitive Impairment by Controlling Oxidative Neuronal Damage. Xing et al. Neurodegenerative Diseases. 2020DOI: 10.1159/000507023 Source

Neuroprotective Benefits of Exercise and MitoQ on Memory Function, Mitochondrial Dynamics, Oxidative Stress, and Neuroinflammation in D-Galactose-Induced Aging Rats. Jeong et al. Brain Sciences. 2021DOI: 10.3390/brainsci11020164 Source

Mitochondria: Novel Mechanisms and Therapeutic Targets for Secondary Brain Injury After Intracerebral Hemorrhage. Chen et al. Frontiers in Aging Neuroscience. 2021DOI: 10.3389/fnagi.2020.615451 Source

Treating Neurodegenerative Disease with Antioxidants: Efficacy of the Bioactive Phenol Resveratrol and Mitochondrial-Targeted MitoQ and SkQ. Shinn et al. Antioxidants. 2021DOI: 10.3390/antiox10040573 Source

Effective therapeutic strategies in a preclinical mouse model of Charcot–Marie–Tooth disease. Nuevo-Tapioles et al. Human Molecular Genetics. 2021DOI: 10.1093/hmg/ddab207 Source

Mitochondrial, exosomal miR137-COX6A2 and gamma synchrony as biomarkers of parvalbumin interneurons, psychopathology, and neurocognition in schizophrenia. Khadimallah et al. Molecular Psychiatry. 2022DOI: 10.1038/s41380-021-01313-9 Source

Mitoquinone supplementation alleviates oxidative stress and pathologic outcomes following repetitive mild TBI at a chronic time point. Tabet et al. Experimental Neurology. 2022DOI: 10.1016/j.expneurol.2022.113987 Source

The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: A worm model for adrenoleukodystrophy. Coppa A et al. Free Radical Biology and Medicine. 2020DOI: 10.1016/j.freeradbiomed.2020.01.177 Source

Mitoquinone alleviates vincristine-induced neuropathic pain through inhibiting oxidative stress and apoptosis via the improvement of mitochondrial dysfunction. Chen X et al. Biomedicine & Pharmacotherapy. 2020DOI: 10.1016/j.biopha.2020.110003 Source

Involvement of oxidative stress and mitochondrial mechanisms in air pollution-related neurobiological impairments. Salvi A et al. Neurobiology of Stress. 2020DOI: 10.1016/j.ynstr.2019.100205 Source

Role of the mitochondrial calcium uniporter in Mg2+-free-induced epileptic hippocampal neuronal apoptosis. Li Y et al. International Journal od Neuroscience. 2020DOI: 10.1080/00207454.2020.1715978 Source

Neuroprotective effects of mitoquinone and oleandrin on Parkinson’s disease model in zebrafish. Ünal I et al. International Journal of Neuroscience. 2020DOI: 10.1080/00207454.2019.1698567 Source

The interplay between redox signalling and proteostasis in neurodegeneration: In vivo effects of a mitochondria-targeted antioxidant in Huntington's disease mice. Pinho BR et al. Free Radical Biology and Medicine. 2020DOI: 10.1016/j.freeradbiomed.2019.11.021 Source

Mitophagy reduces oxidative stress via Keap1/Nrf2/PHB2 pathway after SAH in rats. Zhang T et al. Stroke. 2019DOI: 10.1161/STROKEAHA.118.021590 Source

Mitoquinone attenuates blood-brain barrier disruption through Nrf2/PHB2/OPA1 pathway after subarachnoid hemorrhage in rats. Zhang et al. Experimental Neurology. 2019DOI: 10.1016/j.expneurol.2019.02.009 Source

Therapeutic potential of the mitochondria-targeted antioxidant MitoQ in mitochondrial-ROS induced sensorineural hearing loss caused by Idh2 deficiency. Kim YR et al. Redox Biology. 2019DOI: 10.1016/j.redox.2018.11.013 Source

Effects of NADPH Oxidase Inhibitors and Mitochondria-Targeted Antioxidants on Amyloid β1-42-Induced Neuronal Deaths in Mouse Mixed Cortical Cultures. Hwang S et al. Chonnam Medical Journal. 2018DOI: 10.4068/cmj.2018.54.3.159 Source

Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Zhou J et al. American Journal of Translational Research. 2018;10(6):1887-1899. eCollection 2018Source

Neuronal Dysfunction Associated with Cholesterol Deregulation. Marcuzzi A et al. International Journal of Molecular Sciences. 2018DOI: 10.3390/ijms19051523 Source

Mitigating peroxynitrite mediated mitochondrial dysfunction in aged rat brain by mitochondria-targeted antioxidant MitoQ. Maiti AK et al. Biogerontology. 2018DOI: 10.1007/s10522-018-9756-6 Source

Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Jelinek A et al. Free Radical Biology and Medicine. 2018DOI: 10.1016/j.freeradbiomed.2018.01.019 Source

Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo. Nussbaumer M et al. Neuropsychopharmacology. 2016DOI: 10.1038/npp.2015.341 Source

Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters. Breckwoldt MO et al. Scientific Reports. 2016DOI: 10.1038/srep23251 Source

Mitochondria-derived reactive oxygen species mediate caspase-dependent and -independent neuronal deaths. Manus MJ et al. Mol Cell Neurosci. 2014DOI: 10.1016/j.mcn.2014.09.002 Source

The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Saez-Atienzar S et al. Cell Death & Disease. 2014DOI: 10.1038/cddis.2014.320 Source

Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Davies Al et al. Annals of Neurology. 2013DOI: 10.1002/ana.24006 Source

Glucagon-Like Peptide-1 Cleavage Product GLP-1(9-36) Amide Rescues Synaptic Plasticity and Memory Deficits in Alzheimer's Disease Model Mice. Ma T et al. The Journal of Neuroscience. 2012DOI: 10.1523/JNEUROSCI.2107-12.2012 Source

Amyloid β-Induced Impairments in Hippocampal Synaptic Plasticity Are Rescued by Decreasing Mitochondrial Superoxide. Ma T et al. The Journal of Neuroscience. 2011DOI: 10.1523/JNEUROSCI.6566-10.2011 Source

Neuroprotection by a mitochondria-targeted drug in a Parkinson's disease model. Ghosh A et al. Free Radical Biology and Medicine. 2010DOI: 10.1016/j.freeradbiomed.2010.08.028 Source

Mitochondria-Targeted Antioxidants Protect Against Amyloid-β Toxicity in Alzheimer's Disease Neurons. Manczak M et al. Journal of Alzheimer’s Disease. 2010DOI: 10.3233/JAD-2010-100564 Source

Mitochondrial Dysfunction in SOD1G93A-Bearing Astrocytes Promotes Motor Neuron Degeneration: Prevention by Mitochondrial-Targeted Antioxidants. Cassina P et al. The Journal of Neuroscience. 2008DOI: 10.1523/JNEUROSCI.5308-07.2008 Source

Mitochondrial Superoxide Production and Nuclear Factor Erythroid 2-Related Factor 2 Activation in p75 Neurotrophin Receptor-Induced Motor Neuron Apoptosis. Pehar M et al. The Journal of Neuroscience. 2007DOI: 10.1523/JNEUROSCI.0823-07.2007 Source

Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappaB. Barhoumi R et al. Molecular Brain Research. 2004DOI: 10.1016/j.molbrainres.2003.12.009 Source


Oxidative stress-mediated mitochondrial fission promotes hepatic stellate cell activation via stimulating oxidative phosphorylation. Zhou et al. Cell Death & Disease. 2022DOI: 10.1038/s41419-022-05088-x Source

Down regulation of NDUFS1 is involved in the progression of parenteral-nutrition-associated liver disease by increasing Oxidative stress. Wan et al. The Journal of Nutritional Biochemistry. 2023DOI: 10.1016/j.jnutbio.2022.109221 Source

Low-Dose Acetylsalicylic Acid and Mitochondria-Targeted Antioxidant Mitoquinone Attenuate Non-Alcoholic Steatohepatitis in Mice. Turkseven et al. Antioxidants. 2023DOI: 10.3390/antiox12040971 Source

Mitoquinone protects against acetaminophen-induced liver injury in an FSP1-dependent and GPX4-independent manner. He et al. Toxicology and Applied Pharmacology. 2023DOI: 10.1016/j.taap.2023.116452 Source

Effect of mitoquinone on liver metabolism and steatosis in obese and diabetic rats. Fink et al. Pharmacology Research & Perspectives. 2021DOI: 10.1002/prp2.701 Source

The mitochondria-targeting antioxidant MitoQ alleviated lipopolysaccharide/ d-galactosamine-induced acute liver injury in mice. Hu et al. Immunology Letters. 2021DOI: 10.1016/j.imlet.2021.09.003 Source

Novel Anti-inflammatory Treatments in Cirrhosis. A Literature-Based Study. Kronborg et al. Frontiers in Medicine. 2021DOI: 10.3389/fmed.2021.718896 Source

The emerging significance of mitochondrial targeted strategies in NAFLD treatment. Zhang et al. Life Sciences. 2023DOI: 10.1016/j.lfs.2023.121943 Source

Mitochondria-targeted ubiquinone (MitoQ) enhances acetaldehyde clearance by reversing alcohol-induced posttranslational modification of aldehyde dehydrogenase 2: A molecular mechanism of protection against alcoholic liver disease. Hao L et al. Redox Biology. 2018DOI: 10.1016/j.redox.2017.11.005 Source

Therapeutic targeting of the mitochondrial reactive oxygen species engine prevents portal hypertension and hepatic fibrogenesis. Weiskirchen R. Liver International. 2017DOI: 10.1111/liv.13442 Source

Mitochondria-targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats. Vilaseca M et al. Liver International. 2017DOI: 10.1111/liv.13436 Source

Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome. Hoyt LR et al. Redox Biology. 2017DOI: 10.1016/j.redox.2017.04.020 Source

Mitochondrial reactive oxygen species generation triggers inflammatory response and tissue injury associated with hepatic ischemia–reperfusion: Therapeutic potential of mitochondrially targeted antioxidants. Mukhopadhyay P et al. Free Radical Biology and Medicine. 2012DOI: 10.1016/j.freeradbiomed.2012.05.036 Source

Mitochondrial-targeted ubiquinone alleviates concanavalin A-induced hepatitis via immune modulation. Desta YT et al. International Immunopharmacology. 2020DOI: 10.1016/j.intimp.2020.106518 Source

Mitochondria-targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis in cirrhotic rats. Turkseven S et al. American Journal of Physiology – Gastrointestinal and Liver Physiology. 2019DOI: 10.1152/ajpgi.00135.2019 Source

A Mitochondrial Specific Antioxidant Reverses Metabolic Dysfunction and Fatty Liver Induced by Maternal Cigarette Smoke in Mice. Li G et al. Nutrients. 2019DOI: 10.3390/nu11071669 Source

The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion. van Golen RF et al. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2019DOI: 10.1016/j.bbadis.2019.01.014 Source

In cirrhotic rats, mitochondria-targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis by modulating oxidative stress and mitophagy. Turkseven S et al. Journal of Hepatology. 2018DOI: 10.1016/S0168-8278(18)31178-4 Source


Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction. Miao J et al. Aging Cell. 2019DOI: 10.1111/acel.13004 Source

Evaluation of a novel mitochondria‐targeted anti-­oxidant therapy for ischaemia-­reperfusion injury in renal transplantation. Hamed M. 2017Source

AMPK activation coupling SENP1-Sirt3 axis protects against acute kidney injury. Zhu M et al. Molecular Therapy: The Journal of the American Society of Gene Therapy. 2023DOI: 10.1016/j.ymthe.2023.08.014 Source

Micheliolide Attenuates Lipopolysaccharide-Induced Inflammation by Modulating the mROS/NF-κB/NLRP3 Axis in Renal Tubular Epithelial Cells43. Lei X et al. Mediators of Inflammation. 2020DOI: 10.1155/2020/3934769 Source

Effects of oxidative stress on hepatic encephalopathy pathogenesis in mice. Bai Y et al. Nature Communications. 2023DOI: 10.1038/s41467-023-40081-8 Source

Mitochondria-derived reactive oxygen species are involved in renal cell ferroptosis during lipopolysaccharide-induced acute kidney injury. Liang NN et al. International Immunopharmacology. 2022DOI: 10.1016/j.intimp.2022.108687 Source

Mitoquinone Protects Podocytes from Angiotensin II-Induced Mitochondrial Dysfunction and Injury via the Keap1-Nrf2 Signaling Pathway. Zhu Z et al. Oxidative Medicine and Cellular Longevity. 2021DOI: 10.1155/2021/1394486 Source

Tubular Mitochondrial Dysfunction, Oxidative Stress, and Progression of Chronic Kidney Disease. Fontecha-Barriuso M et al. Antioxidants. 2022DOI: 10.3390/antiox11071356 Source

Micheliolide Attenuates Lipopolysaccharide-Induced Inflammation by Modulating the mROS/NF-κB/NLRP3 Axis in Renal Tubular Epithelial Cells43. Lei X et al. Mediators of Inflammation. 2020DOI: 10.1155/2020/3934769 Source

DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease. Gao P et al. Clinical Science (London, England: 1979). 2020DOI: 10.1042/CS20200005 Source

Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Han Y et al. Redox Biology. 2018DOI: 10.1016/j.redox.2018.02.013 Source

Mitochondrial Abnormality Facilitates Cyst Formation in Autosomal Dominant Polycystic Kidney Disease. Ishimoto Y et al. Molecular and Cellular Biology. 2017DOI: 10.1128/MCB.00337-1 Source

The swan-neck lesion: proximal tubular adaptation to oxidative stress in nephropathic cystinosis. Galaretta CI et al. American Journal of Physiology – Renal Physiology. 2015DOI: 10.1152/ajprenal.00591.2014

Contribution of mitochondrial function to exercise-induced attenuation of renal dysfunction in spontaneously hypertensive rats. Gu Q et al. Molecular and Cellular Biochemistry. 2015DOI: 10.1007/s11010-015-2439-6 Source

Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK) cells. Marine A et al. Redox Biology. 2014DOI: 10.1016/j.redox.2014.01.014 Source

Preclinical evaluation of the mitochondria-targeted antioxidant mitoquinone to treat sepsis-induced acute kidney injury. Patil NK et al. Federation of American Societies of Experimental Biology. 2013DOI: 10.1096/fasebj.27.1_supplement.889.8 Source

MitoQ Blunts Mitochondrial and Renal Damage during Cold Preservation of Porcine Kidneys. Parajuli N et al. PLoS ONE. 2012DOI: 10.1371/journal.pone.0048590 Source

The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys. Mitchell T et al. The Journal of Pharmacology and Experimental Therapeutics. 2011DOI: 10.1124/jpet.110.176743 Source


Parkin regulates adiposity by coordinating mitophagy with mitochondrial biogenesis in white adipocytes. Moore TM et al. Nature Communications. 2022DOI: 10.1038/s41467-022-34468-2 Source

Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Acín-Pérez R et al. Nature Metabolism. 2020DOI: 10.1038/s42255-020-00273-8 Source

Cysteine 253 of UCP1 regulates energy expenditure and sex-dependent adipose tissue inflammation. Mills EL et al. Cell Metabolism. 2022DOI: 10.1016/j.cmet.2021.11.003 Source

Accelerating cryoprotectant diffusion kinetics improves cryopreservation of pancreatic islets. Dolezalova N et al. Scientific Reports. 2021DOI: 10.1038/s41598-021-89853-6 Source

CD74 ablation rescues type 2 diabetes mellitus-induced cardiac remodeling and contractile dysfunction through pyroptosis-evoked regulation of ferroptosis. Chen L et al. Pharmacological Research. 2022DOI: 10.1016/j.phrs.2022.106086 Source

Antioxidant Mitoquinone Alleviates Chronic Pancreatitis via Anti-Fibrotic and Antioxidant Effects. Li M et al. Journal of Inflammation Research. 2022DOI: 10.2147/JIR.S357394 Source

The Antioxidant Moiety of MitoQ Imparts Minimal Metabolic Effects in Adipose Tissue of High Fat Fed Mice. Bond S et al. Frontiers in Physiology. 2019DOI: 10.3389/fphys.2019.00543 Source

Chlamydia pneumoniae infection-induced endoplasmic reticulum stress causes fatty acid-binding protein 4 secretion in murine adipocytes. Walenna NF et al. Journal Biological Chemistry. 2020DOI: 10.1074/jbc.RA119.010683 Source

The role of mitochondrial oxidative stress in the metabolic alterations in diet-induced obesity in rats. Marin-Royo G et al. The Journal of the Federation of American Societies for Experimental Biology. 2019DOI: 10.1096/fj.201900347RR Source

Effect of a mitochondrial-targeted coenzyme Q analog on pancreatic β-cell function and energetics in high fat fed obese mice. Imai Y et al. Pharmacology Research & Perspectives. 2018DOI: 10.1002/prp2.393 Source

Metabolic effects of a mitochondrial-targeted coenzyme Q analog in high fat fed obese mice. Fink BD et al. Pharmacology Research & Perspectives. 2017DOI: 10.1002/prp2.301 Source

A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats. Coudray C et al. British Journal of Nutrition. 2016DOI: 10.1017/S0007114515005528 Source

The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats. Fouret G et al. Biochimica et Biophys Acta (BBA) - Bioenergetics. 2015DOI: 10.1016/j.bbabio.2015.05.019 Source

FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus. Li J et al. Scientific Reports. 2015DOI: 10.1038/srep12724 Source

A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic Dysfunction in High-Fat–Fed Mice. Fink BD et al. The Journal of Pharmacology and Experimental Therapeutics. 2014DOI: 10.1124/jpet.114.219329 Source

Tectorigenin Attenuates Palmitate-Induced Endothelial Insulin Resistance via Targeting ROS-Associated Inflammation and IRS-1 Pathway. Wang Q et al. PLoS One. 2013DOI: 10.1371/journal.pone.0066417 Source

Mitochondria-targeted Antioxidants Protect Pancreatic β-cells against Oxidative Stress and Improve Insulin Secretion in Glucotoxicity and Glucolipotoxicity. Lim S et al. Cellular Physiology and Biochemistry. 2011DOI: 10.1159/000335802 Source


Programmed NP Cell Death Induced by Mitochondrial ROS in a One-Strike Loading Disc Degeneration Organ Culture Model. Li, Bao-Liang et al. Oxidative Medicine and Cellular Longevity. 2021DOI: 10.1155/2021/5608133 Source

507 Late-Breaking: Heat Stress and Mitoq Supplementation Impact Skeletal Muscle Mitochondrial Capacities in Pigs. Wesolowski, Lauren T et al. Journal of Animal Science. 2021DOI: 10.1093/jas/skab235.371 Source

The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Williamson, Josh et al. Redox Biology. 2020DOI: 10.1016/j.redox.2020.101673 Source

Mitochondria-targeted antioxidant supplementation improves 8 km time trial performance in middle-aged trained male cyclists. Broome, S. C. et al. Journal of the International Society of Sports Nutrition. 2021DOI: 10.1186/s12970-021-00454-0 Source

MitoQ supplementation improves oxygen uptake kinetic by reduced reactive oxygen species levels and altered expression of miR-155 and miR-181b. Park, Yoonjung et al. The FASEB Journal. 2022DOI: 10.1096/fasebj.2022.36.S1.R6226 Source

MitoQ supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men. Broome, S. C. et al. Redox Biology 2022DOI: 10.1016/j.redox.2022.102341 Source

MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men. Pham T et al. European Journal of Applied Physiology. 2020DOI: 10.1007/s00421-020-04396-4 Source

Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. Hancock M et al. Elife. 2018DOI: 10.7554/eLife.41044 Source

MitoQ Supplementation Improves Leg-Extension Power in Healthy Late Middle-Aged and Older Adults. Bispham NZ et al. The Journal of the Federation of American Societies for Experimental Biology. 2017DOI: 10.1096/fasebj.31.1_supplement.lb852 Source

MitoQ supplementation improves motor function and muscle mitochondrial health in old male mice. Jusice JN et al. Gerontologist 2015;55(2):163DOI: 10.1093/geront/gnv535.02 Source

The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells. Lowes DA et al. Free Radical Research. 2009DOI: 10.1080/10715760902736275 Source


Mitochondria-targeted antioxidant MitoQ ameliorates ROS production and improves cell viability in cryopreserved buffalo fibroblasts. Punetha, Meeti et al. Tissue and Cell. 2023DOI: 10.1016/j.tice.2023.102067 Source

Mitochondrial Activity Is Upregulated in Nonlesional Atopic Dermatitis and Amenable to Therapeutic Intervention. Leman, Geraldine et al. Journal of Investigative Dermatology. 2022DOI: 10.1016/j.jid.2022.01.035 Source

Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. Victorelli S et al. The EMBO Journal. 2019DOI: 10.15252/embj.2019101982 Source

Protective effect of mitochondrially targeted antioxidant MitoQ on oxidatively stressed fibroblasts. Valachová K et al. L. Chemical Paper. 2018DOI: 10.1007/s11696-017-0359-5 Source

Collagen Fragmentation Promotes Oxidative Stress and Elevates Matrix Metalloproteinase-1 in Fibroblasts in Aged Human Skin. Fisher GJ et al. The American Journal of Pathology. 2009DOI: 10.2353/ajpath.2009.080599 Source

Cellular response to infrared radiation involves retrograde mitochondrial signaling. Schroeder P et al. Free Radical Biology and Medicine. 2007DOI: 10.1016/j.freeradbiomed.2007.04.002 Source

7-Dehydrocholesterol enhances ultraviolet A-induced oxidative stress in keratinocytes: Roles of NADPH oxidase, mitochondria, and lipid rafts. Valencia A et al. Free Radical Biology and Medicine. 2006DOI: 10.1016/j.freeradbiomed.2006.09.006 Source

MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Saretzki G et al. Aging Cell. 2003DOI: 10.1046/j.1474-9728.2003.00040.x Source


The mitochondrial gene-CMPK2 functions as a rheostat for macrophage homeostasis. Arumugam, Prabhakar et al. Frontiers in Immunology. 2022DOI: 10.3389/fimmu.2022.935710 Source

Tumor Microenvironment following Gemcitabine Treatment Favors Differentiation of Immunosuppressive Ly6Chigh Myeloid Cells. Wu, Caijun et al. The Journal of Immunology. 2020DOI: 10.4049/jimmunol.1900930 Source

Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis. Codo, Ana Campos et al. Cell Metabolism. 2020DOI: 10.1016/j.cmet.2020.07.007 Souce

Mitochondrial reactive oxygen is critical for IL-12/IL-18-induced IFN-γ production by CD4+ T cells and is regulated by Fas/FasL signaling. Rackov, Gorjana et al. Cell Death & Disease. 2022DOI: 10.1038/s41419-022-04907-5 Source

DMGV Is a Rheostat of T Cell Survival and a Potential Therapeutic for Inflammatory Diseases and Cancers. Yang, Fengyuan Mandy et al. Frontiers in Immunology. 2022DOI: 10.3389/fimmu.2022.918241 Source

Mitoquinone Mesylate and Mitochondrial DNA in End Organs in Humanized Mouse Model of Chronic Treated Human Immunodeficiency Virus Infection. Song, Sihyeong et al. The Journal of Infectious Diseases. 2023DOI: 10.1093/infdis/jiad044 Source

Mitochondrial Reactive Oxygen Species Are Essential for the Development of Psoriatic Inflammation. Mizuguchi, Soichi et al. Frontiers in Immunology. 2021DOI: 10.3389/fimmu.2021.714897 Source

Obesity Exacerbates Coxsackievirus Infection via Lipid-Induced Mitochondrial Reactive Oxygen Species Generation. Kim, Seong-Ryeol et al. Immune Network. 2022DOI: 10.4110/in.2022.22.e19 Source

Mitochondrial Antioxidants Alleviate Oxidative and Nitrosative Stress in a Cellular Model of Sepsis. Apostolova N et al. Pharmaceutical Research. 2011DOI: 10.1007/s11095-011-0528-0 Source

An investigation of the effects of MitoQ on human peripheral mononuclear cells. Marthandan S et al. Free Radical Research. 2011DOI: 10.3109/10715762.2010.532497 Source

Tempol, an Intracellular Antioxidant, Inhibits Tissue Factor Expression, Attenuates Dendritic Cell Function, and Is Partially Protective in a Murine Model of Cerebral Malaria. Francischetti IM et al. PLoS One. 2014DOI: 10.1371/journal.pone.0087140 Source

Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Lowes DA et al. British Journal of Anaesthesia. 2013DOI: 10.1093/bja/aes577 Source

Mitochondrial anti-oxidant protects IEX-1 deficient mice from organ damage during endotoxemia. Ramsey H et al. International Immunopharmacology. 2014DOI: 0.1016/j.intimp.2014.10.019 Source

FRI0242 Role of Mitochondria- and Nadph Oxidase-Derived ROS in Fibroblasts Isolated from Patients Affected by Systemic Sclerosis. Spadoni T et al. Annals of the Rheumatic Diseases. 2016DOI: 10.1136/annrheumdis-2016-eular.3908 Source

IL-4 Protects the Mitochondria Against TNFα and IFNγ Induced Insult During Clearance of Infection with Citrobacter rodentium and Escherichia coli. Maiti AK et al. Scientific Reports. 2015DOI: 10.1038/srep15434 Source

Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Fisicaro P et al. Nature Medicine. 2017DOI: 10.1038/nm.4275 Source

P037 MDR1-deficiency unmasks mitochondrial dysfunction as a pathogenic mechanism in IBD. Ho GT et al. Journal of Crohn’s and Colitis. 2017DOI: 10.1093/ecco-jcc/jjx002.163 Source

Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Buskiewicz IA et al. Science Signaling. 2016DOI: 10.1126/scisignal.aaf1933 Source

Detection of a microbial metabolite by STING regulates inflammasome activation in response to Chlamydia trachomatis infection. Webster SJ et al. PLoS Pathogens. 2017DOI: 10.1371/journal.ppat.1006383 Source

Deficiency in Duox2 activity alleviates ileitis in GPx1- and GPx2-knockout mice without affecting apoptosis incidence in the crypt epithelium. Chu F-F et al. Redox Biology. 2017DOI: 10.1016/j.redox.2016.11.001 Source

The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway. Hu Q et al. Cell Death & Disease. 2018DOI: 10.1038/s41419-018-0436-x Source

MDR1 deficiency impairs mitochondrial homeostasis and promotes intestinal inflammation. Ho GT et al. Mucosal Immunology. 2018DOI: 10.1038/mi.2017.31 Source

Direct and indirect pro-inflammatory cytokine response resulting from TC-83 infection of glial cells. Keck F et al. Virulence. 2018DOI: 10.1080/21505594.2018.1509668 Source

Mitochondrial-Directed Antioxidant Reduces Microglial-Induced Inflammation in Murine In Vitro Model of TC-83 Infection. Keck F et al. Viruses. 2018DOI: 10.3390/v10110606 Source

MitoQ Modulates Lipopolysaccharide-Induced Intestinal Barrier Dysfunction via Regulating Nrf2 Signaling. Zhang et al. Mediators of Inflammation. 2020DOI: 10.1155/2020/3276148 Source

The Reduced Oligomerization of MAVS Mediated by ROS Enhances the Cellular Radioresistance. Du Y et al. Oxidative Medicine and Cellular Longevity. 2020 March 4DOI: 10.1155/2020/2167129 Source


Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins. Migrino RQ et al. American Journal of Physiology-Heart and Circulatory Physiology. 2011DOI: 10.1152/ajpheart.00503.2011 Source

Misfolding of short-chain acyl-CoA dehydrogenase leads to mitochondrial fission and oxidative stress. Schmidt SP et al. Molecular Genetics and Metabolism. 2010DOI: 10.1016/j.ymgme.2010.03.009 Source

Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. Jauslin ML et al. The Journal of the Federation of American Societies for Experimental Biology. 2003DOI: 10.1096/fj.03-0240fje Source

The Activity of Menkes Disease Protein ATP7A Is Essential for Redox Balance in Mitochondria *. Bhattacharjee A et al. Journal of Biological Chemistry. 2016DOI: 10.1074/jbc.M116.727248 Source

Mitochondrial Superoxide Contributes to Hippocampal Synaptic Dysfunction and Memory Deficits in Angelman Syndrome Model Mice. Santini E et al. The Journal of Neuroscience. 2015DOI: 10.1523/JNEUROSCI.2246-15.2015 Source

Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Gallego-Villar L et al. Biochemical and Biophysical Research Communications. 2014DOI: 10.1016/j.bbrc.2014.08.091 Source

Treatment with antioxidants ameliorates oxidative damage in a mouse model of propionic acidemia. Rivera-Barahona A et al. Molecular Genetics and Metabolism. 2017DOI: 10.1016/j.ymgme.2017.07.009 Source


Mitochondrial ROS in Slc4a11 KO Corneal Endothelial Cells Lead to ER Stress. Shyam, Rajalekshmy et al. Frontiers in Cell and Developmental Biology. 2022DOI: 10.3389/fcell.2022.878395 Source

MitoROS due to loss of Slc4a11 in corneal endothelial cells induces ER stress, lysosomal dysfunction and impairs autophagy. Shyam, Rajalekshmy et al. 2020DOI: 10.1101/2020.08.27.250977 Source

Mitochondrial ROS Induced Lysosomal Dysfunction and Autophagy Impairment in an Animal Model of Congenital Hereditary Endothelial Dystrophy. Shyam, Rajalekshmy et al. Investigative Ophthalmology & Visual Science. 2021DOI: 10.1167/iovs.62.12.15 Source

Mitoquinone intravitreal injection ameliorates retinal ischemia-reperfusion injury in rats involving SIRT1/Notch1/NADPH axis. D, Tang et al. Drug development research. 2022DOI: 10.1002/ddr.21911 Source

Mitochondrial-Targeted Antioxidants Attenuate TGF-β2 Signaling in Human Trabecular Meshwork Cells. Rao VR et al. Investigative Ophthalmology & Visual Science. 2019DOI: 10.1167/iovs.19-27542 Source


Regulatory effect of mitoQ on the mtROS-NLRP3 inflammasome pathway in leptin-pretreated BEAS-2 cells. Chong, Lei et al. Experimental and Therapeutic Medicine. 2021.DOI: 10.3892/etm.2021.9897 Source

[Mitochondrial coenzyme Q attenuates lipopolysaccharide-induced mitochondria-dependent apoptosis in type II alveolar epithelial cells via phosphatidylinositol 3-kinase/Akt pathway]. Zhou, Jiaqi et al. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022.DOI: 10.3760/cma.j.cn121430-20211221-01899 Source

Mitoquinone mitigates paraquat-induced A549 lung epithelial cell injury by promoting MFN1/MFN2-mediated mitochondrial fusion. Liu, Chao et al. Journal of Biochemical and Molecular Toxicology. 2022.DOI: 10.1002/jbt.23127 Source

Mitochondrial Coenzyme Q Protects Sepsis-Induced Acute Lung Injury by Activating PI3K/Akt/GSK-3<i>β</i>/mTOR Pathway in Rats. Li, Ruirui et al. BioMed Research International. 2019.DOI: 10.1155/2019/5240898 Source

Decreased IDO1 Dependent Tryptophan Metabolism in Aged Lung during Influenza. Cho, Soo Jung et al. The European respiratory journal. 2021.DOI: 10.1183/13993003.00443-2020 Source

Maternal Particulate Matter Exposure Impairs Lung Health and Is Associated with Mitochondrial Damage. Wang, Baoming et al. Antioxidants. 2021.DOI: 10.3390/antiox10071029 Source

SIRT1 prevents cigarette smoking-induced lung fibroblasts activation by regulating mitochondrial oxidative stress and lipid metabolism. Zhang, Yue et al. Journal of Translational Medicine. 2022.DOI: 10.1186/s12967-022-03408-5 Source

Arsenic induces ferroptosis and acute lung injury through mtROS-mediated mitochondria-associated endoplasmic reticulum membrane dysfunction. Li, Meng-Die et al. Ecotoxicology and Environmental Safety. 2022.DOI: 10.1016/j.ecoenv.2022.113595 Source

Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche. Wu, Xinhui et al. Environmental Pollution. 2022.DOI: 10.1016/j.envpol.2022.119292 Source

Antioxidant mitoquinone ameliorates EtOH-LPS induced lung injury by inhibiting mitophagy and NLRP3 inflammasome activation. Sang, Wenhua et al. Frontiers in Immunology. 2022.DOI: 10.3389/fimmu.2022.973108 Source

Mitoquinone mesylate attenuates pathological features of lean and obese allergic asthma in mice. Chandrasekaran, Ravishankar et al. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2023.DOI: 10.1152/ajplung.00249.2022 Source

Mitoquinone mesylate targets SARS-CoV-2 and associated lung inflammation through host pathways. Petcherski, Anton et al. bioRxiv (preprint). 2015DOI: 10.1101/2022.02.22.481100 Source

Jaffer OA et al. American Journal of Respiratory Cell and Molecular Biology. 2015; 52(1): 106–115DOI: 10.1165/rcmb.2013-0519OC Source

Li R et al. BioMed Research International. 2019DOI: 10.1155/2019/524898

Chen S et al. International Journal of Biological Sciences. 2019 Jun 2;15(7):1440-1451DOI: 10.7150/ijbs.30193

Wiegman CH et al. The Journal of Allergy and Clinical Immunology. 2015; 136(3): 769–780DOI: 10.1016/j.jaci.2015.01.046 Source


Hobbs CE et al. Pediatrics International. 2008; 50(4): 481-8DOI: 10.1111/j.1442-200X.2008.02705.x

Botting KJ et al. 2016. Proceedings of the Physical Society (1985-1967), PCB334 (2016)

Mitochondria-targeted antioxidant mitoquinone protects post-thaw human sperm against oxidative stress injury. Liu L et al. Zhonghua Nan Ke Xue. 2016;22(3):205-11Source

Skeffington K et al. Aug 2015. Fetal and Neonatal Physiological Society 42nd Annual meeting: Vancouver

Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish. Fang L et al. Cryobiology. 2014;69(3):386-93DOI: 10.1016/j.cryobiol.2014.09.005 Source

Aljunaidy MM et al. Pharmacological Research.;134:332-342DOI: 10.1016/j.phrs.2018.05.006

Sukjamnong S et al. Scientific Reports. 2018; 8: 6631DOI: 10.1038/s41598-018-24949-0 Source

Phillips TJ et al. Scientific Reports. 2017;7(1):9079DOI: 10.1038/s41598-017-06300-1 Source

Sukjamnong S et al. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2017;313(2): L416-L423DOI: 10.1152/ajplung.00134.2017 Source

Ding Y et al. International Journal of Molecular Medicine. 2018 Nov 5. [Epub ahead of print]DOI: 10.3892/ijmm.2018.3977 Source

Nuzzo AM et al. The American Journal of Pathology. 2018 Sep 21. pii: S0002-9440(18)30019-1DOI: 10.1016/j.ajpath.2018.07.027 Source

Vaka VR et al. Hypertension. 2018 Jul 16. piiDOI: 10.1161/HYPERTENSIONAHA.118.11290 Source

Ganguly E et al. Frontiers in Physiology. 2019 May 24DOI: 10.3389/fphys.2019.00562 Source

Exposing mouse oocytes to MitoQ during in vitro maturation improves maturation and developmental competence. Hosseinzadeh Shirzeyli M et al. Iranian Journal of Biotechnology. 2019DOI: 10.30498/IJB.2020.154641.2454 Source

Zhang J et al. Toxicology and Applied Pharmacology. 2019 Mar 2. pii: S0041-008X(19)30075-4DOI: 10.1016/j.taap.2019.03.001

Autophagy regulates functional differentiation of mammary epithelial cells. Elswood J et al. Autophagy. 2020DOI: 10.1080/15548627.2020.1720427

Marei W et al. Human Reproduction. 2019DOI: 10.1093/humrep/dez161 Source

Ibrahim AA et al. Life Sciences. 2019 Jul 12DOI: 10/1016/j.lfs.2019.116655

Yang Y et al. Antioxidants & Redox Signaling. 2020 Mar 31DOI: 10.1089/ars.2019.7891


Kalivendi SV et al. Biochemical Journal. 2005; 389(Pt 2): 527–539DOI: 10.1042/BJ20050285 Source

Vergeade A et al. Free Radical Biology and Medicine. 2010;49(5):748-56DOI: 10.1016/j.freeradbiomed.2010.05.024 Source

Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Rodriguez-Cuenca S et al. Free Radical Biology and Medicine. 2010;48(1):161-72DOI: 10.1016/j.freeradbiomed.2009.10.039 Source

Whiteman M et al. Antioxidant & Redox Signaling. 2008;10(3):641-50DOI: 10.1089/ars.2007.1879 Source

Mukhopadhyay P et al. Free Radical and Medicine. 2012;52(2): 497–506DOI: 10.1016/j.freeradbiomed.2011.11.001 Source

Ojano-Dirain CP et al. Laryngoscope. 2012;122(11):2543-8DOI: 10.1002/lary.23593 Source

Wani WY et al. Neuropharmacology. 2011;61(8):1193-201DOI: 10.1016/j.neuropharm.2011.07.008 Source

Jurkuvenaite A et al. Free Radical Biology and Medicine. 2015; 85: 83–94DOI: 10.1016/j.freeradbiomed.2015.03.039 Source

Ng MR et al. Otolaryngology-Head and Neck Surgery. 2015;152(4):729-33DOI: 10.1177/0194599814564934

Jadidian A et al. Otology & Neurotology. 2015;36(3):526-30DOI: 10.1097/MAO.0000000000000517

Ojano-Dirain CP et al. Otology & Neurotology. 2014;35(3):533-9DOI: 10.1097/MAO.0000000000000192

Dirain CO et al. Otology & Neurotology. 2018;39(1):111-118DOI: 10.1097/MAO.0000000000001638 Source

Maiti AK et al. Neurotoxicity Research. 2017;31(3):358-372DOI: 10.1007/s12640-016-9692-7 Source

Tate AD et al. Otolaryngology-Head and Neck Surgery. 2017;156(3):543-548DOI: 10.1177/0194599816678381 Source

Guigni BA et al. American Journal of Physiology-Cell Physiology. 2018 Sep 12DOI: 10.1152/ajpcell.00002.2018 Source


Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. Echtay KS et al. Journal of Biological Chemistry. 2002;277(49):47129-35DOI: 10.1074/jbc.M208262200 Source

Mitochondrial redox state regulates transcription of the nuclear-encoded mitochondrial protein manganese superoxide dismutase: A proposed adaptive response to mitochondrial  redox imbalance. Kim A et al. Free Radical Biology and Medicine. 2005;38(5):644-54DOI: 10.1016/j.freeradbiomed.2004.10.030

Dhanasekaran A et al. Journal of Biological Chemistry. 2004;279(36):37575-87DOI: 10.1074/jbc.M404003200 Source

Schäfer M et al. Circulation Research. 2003;92(9):1010-5DOI: 10.1161/01.RES.0000070882.81508.FC Source

Redox regulation of cAMP-responsive element-binding protein and induction of manganous superoxide dismutase in nerve growth factor-dependent cell survival. Bedogni B et al. Journal of Biological Chemistry. 2003;278(19):16510-9DOI: 10.1074/jbc.M301089200 Source

Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. James AM et al. Journal of Biological Chemistry. 2005;280(22):21295-312DOI: 10.1074/jbc.M501527200 Source

A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signalling of HIF-1alpha. Sanjuán-Pla A et al. FEBS Letters. 2005;579(12):2669-74DOI: 10.1016/j.febslet.2005.03.088

Protective role of MnSOD and redox regulation of neuronal cell survival. Galeotti T et al. Biomedicine & Pharmacotherapy. 2005;59(4):197-203DOI: 10.1016/j.biopha.2005.03.002 Source

OxLDL enhances L-type Ca2+ currents via lysophosphatidylcholine-induced mitochondrial reactive oxygen species (ROS) production. Fearon IM. Cardiovascular Research. 2006;69(4):855-64DOI: 10.1016/j.cardiores.2005.11.019 Source

Pletjushkina OY et al. Biochemistry (Moscow). 2006;71(1):60-7DOI: 10.1134/S0006297906010093 Source

Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion. Pletjushkina OY et al. Cell Death & Differentiation. 2005;12:1442–1444DOI: 10.1038/sj.cdd.4401685 Source

Koopman WJ et al. Cellular Metabolism. 2005;288(6):C1440-50DOI: 10.1152/ajpcell.00607.2004 Source

Respiratory chain deficiency slows down cell-cycle progression via reduced ROS generation and is associated with a reduction of p21CIP1/WAF1. Schauen M et al. Journal of Cellular Physiology. 2006;209(1):103-12DOI: 10.1002/jcp.20711 Source

Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Chernyak BV et al. Biochimica et Biophysica Acta (BBA) – Bioenergetics . 2006;1757(5-6):525-34DOI: 10.1016/j.bbabio.2006.02.019 Source

Flow dilation in rat small mesenteric arteries is mediated by hydrogen peroxide generated from CYP epoxygenases and xanthine oxidase. Ngai CY. The Open Circulation and Vascular Journal. 2009 Apr. 2(1):15-22DOI: 10.2174/1877382600902010015 Source

Doughan AK et al. Antioxidants & Redox Signaling. 2007; 9(11):1825-36DOI: 10.1089/ars.2007.1693

Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. O'Malley Y et al. Journal of Biological Chemsitry. 2006;281(52):39766-75DOI: 10.1074/jbc.M608268200

TNFα-induced lysosomal membrane permeability is downstream of MOMP and triggered by caspase-mediated NDUFS1 cleavage and ROS formation. Huai J et al. Journal of Cell Science. 2013;126(Pt 17):4015-25DOI: 10.1242/jcs.129999 Source

Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Lee S et al. Cell Research. 2011;21(5):817-34DOI: 10.1038/cr.2011.55

Role of mitochondrial reactive oxygen species in osteoclast differentiation. Srinivasan S et al. Annals of the New York Academy of Sciences. 2010; 1192(1): 245–252DOI: 10.1111/j.1749-6632.2009.05377.x Source

Hämäläinen RH et al. Cell Reports. 2015; 11(10): 1614–1624DOI: 10.1016/j.celrep.2015.05.009

Huang W-Y et al. PLoS One. 2013;8(11):e81546DOI: 10.1371/journal.pone.0081546 Source

Differential modulation of ROS signals and other mitochondrial parameters by the antioxidants MitoQ, resveratrol and curcumin in human adipocytes. Hirzel E et al. Journal of Receptors and Signal Transduction. 2013; 33(5):304-12DOI: 10.3109/10799893.2013.822887 Source

Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Kim JH et al. Cell Death and Differentiation. 2018 Jul 24DOI: 10.1038/s41418-018-0165-9

Mitochondria-targeted molecules determine the redness of the zebra finch bill. Cantarero A et al. Biology Letters. 2017;13(10). pii: 20170455DOI: 10.1098/rsbl.2017.0455 Source

Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence. Tsai IC et al. Journal of Molecular and Cellular Cardiology. 2016;98:18-27DOI: 10.1016/j.yjmcc.2016.07.001 Source

Ammonia sensitive SLC4A11 mitochondrial uncoupling reduces glutamine induced oxidative stress. Ogando DG et al. Redox Biology. 2019;26:101260DOI: 10.1016/j.redox.2019.101260 Source

Redox-regulation and life-history trade offs: Scavenging mitochondrial ROS improves growth in a wild bird. Velando A et al. Scientific Reports. 2019;9(1)DOI: 10.1038/s41598-019-3853335-5

Detection of 8-oxoguanine and apurinic/apyrimidinic sites using a fluorophore-labeled probe with cell-penetrating ability. Kang DM et al. BMC Molecular and Cell Biology. 2019 Nov 27;20(1):54DOI: 10.1186/s12860-019-236

A mitochondria-targeted antioxidant affects the carotenoid-based plumage of red crossbills. Cantarero A et al. bioRxiv. 2019DOI: 10.1101/839670

Olesen M et al. Redox Biology. 2020 May 5DOI: 10.1016/j.redox.2020.101558 Source


The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. Ng, Yeevoon et al. Carcinogenesis. 2005.DOI: 10.1093/carcin/bgi163 Source

Targeting glutamine utilization to block metabolic adaptation of tumor cells under the stress of carboxyamidotriazole-induced nutrients unavailability. Shi, Jing et al. Acta Pharmaceutica Sinica. B. 2022.DOI: 10.1016/j.apsb.2021.07.008 Source

HDAC class I inhibitor domatinostat sensitizes pancreatic cancer to chemotherapy by targeting cancer stem cell compartment via FOXM1 modulation. Roca, Maria Serena et al. Journal of Experimental & Clinical Cancer Research. 2022.DOI: 10.1186/s13046-022-02295-4 Source

The Antioxidant Transcription Factor Nrf2 Negatively Regulates Autophagy and Growth Arrest Induced by the Anticancer Redox Agent Mitoquinone *. Rao, V. Ashutosh et al. Journal of Biological Chemistry. 2010.DOI: 10.1074/jbc.M110.133579 Source

Involvement of reactive oxygen species in 2-methoxyestradiol-induced apoptosis in human neuroblastoma cells. Zhang, Qi et al. Cancer Letters. 2011.DOI: 10.1016/j.canlet.2011.09.005 Source

Mitochondria-Targeted Drugs Synergize with 2-Deoxyglucose to Trigger Breast Cancer Cell Death. Cheng, Gang et al. Cancer Research. 2012.DOI: 10.1158/0008-5472.CAN-11-3928 Source

Khz (Fusion of Ganoderma lucidum and Polyporus umbellatus Mycelia) Induces Apoptosis by Increasing Intracellular Calcium Levels and Activating JNK and NADPH Oxidase-Dependent Generation of Reactive Oxygen Species. Kim, Tae Hwan et al. PLOS ONE. 2012.DOI: 10.1371/journal.pone.0046208 Source

Carbon Ion Beams Induce Hepatoma Cell Death by NADPH Oxidase-Mediated Mitochondrial Damage. Sun, Chao et al. Journal of Cellular Physiology. 2014.DOI: 10.1002/jcp.24424 Source

Atg7- and Keap1-dependent autophagy protects breast cancer cell lines against mitoquinone-induced oxidative stress. Gonzalez, Yanira et al. Oncotarget. 2014.DOI: 10.18632/oncotarget.1715 Source

Mitoquinone restores platelet production in irradiation-induced thrombocytopenia. Ramsey, Haley et al. Platelets. 2015.DOI: 10.3109/09537104.2014.935315 Source

Abstract 2917: Therapeutic targeting of the mitochondria: An evaluation of the transcriptional link between the antioxidant response and autophagy. Pokrzywinski, Kaytee L. et al. Cancer Research. 2016.DOI: 10.1158/1538-7445.AM2016-2917 Source

Abstract 1090: microRNA regulation of Nrf2 and the antioxidant response in breast cancer cells following redox therapy. Mascia, Francesca et al. Cancer Research. 2016.DOI: 10.1158/1538-7445.AM2016-1090 Source

Inhibiting Lactate Dehydrogenase A Enhances the Cytotoxicity of the Mitochondria Accumulating Antioxidant, Mitoquinone, in Melanoma Cells. Alshamrani, Ali A. et al. Human Skin Cancer, Potential Biomarkers and Therapeutic Targets. 2016.DOI: Source

Suppression of B-RafV600E melanoma cell survival by targeting mitochondria using triphenyl-phosphonium-conjugated nitroxide or ubiquinone. Hong, Seung-Keun et al. Cancer Biology & Therapy. 2017.DOI: 10.1080/15384047.2016.1250987 Source

MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential. Sun, Chao et al. Autophagy. 2017.DOI: 10.1080/15548627.2017.1280219 Source

Abstract 1505: Breast cancer cells treated with mitochondria targeted redox active agents induce mitophagy. Biel, Thomas; Rao, Ashutosh. Cancer Research. 2017.DOI: 10.1158/1538-7445.AM2017-1505 Source

Abstract 466: Role of miR-15b-3p in mitoquinone induced autophagy of breast cancer cells. Mascia, Francesca et al. Cancer Research. 2017.DOI: 10.1158/1538-7445.AM2017-466 Source

ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Cesi, Giulia et al. Molecular Cancer. 2017.DOI: 10.1186/s12943-017-0667-y Source

Mitochondrial dysfunction activates lysosomal-dependent mitophagy selectively in cancer cells. Biel, Thomas G. et al. Oncotarget. 2017.DOI: 10.18632/oncotarget.23171 Source

Induction of autophagy by depolarization of mitochondria. Lyamzaev, Konstantin G. et al. Autophagy. 2018.DOI: 10.1080/15548627.2018.1436937 Source

Cyclovirobuxine D Induces Apoptosis and Mitochondrial Damage in Glioblastoma Cells Through ROS-Mediated Mitochondrial Translocation of Cofilin. Zhang, Lin et al. Frontiers in Oncology. 2021.DOI: 10.3389/fonc.2021.656184 Source

Disrupted mitochondrial homeostasis coupled with mitotic arrest generates antineoplastic oxidative stress. Hao, Xiaohe et al. Oncogene. 2022.DOI: 10.1038/s41388-021-02105-9 Source

Low-level laser prevents doxorubicin-induced skeletal muscle atrophy by modulating AMPK/SIRT1/PCG-1α-mediated mitochondrial function, apoptosis and up-regulation of pro-inflammatory responses. Ou, Hsiu-Chung et al. Cell & Bioscience. 2021.DOI: 10.1186/s13578-021-00719-w Source

In search of autophagy biomarkers in breast cancer: Receptor status and drug agnostic transcriptional changes during autophagy flux in cell lines. Mascia, Francesca et al. PLOS ONE. 2022.DOI: 10.1371/journal.pone.0262134 Source

Targeting prooxidant MnSOD effect inhibits triple-negative breast cancer (TNBC) progression and M2 macrophage functions under the oncogenic stress. Al Haq, Aushia Tanzih et al. Cell Death & Disease. 2022.DOI: 10.1038/s41419-021-04486-x Source

Role of Mitochondrial Dysfunction in the Pathogenesis of Cisplatin-Induced Myotube Atrophy. Matsumoto, Chinami et al. Biological & Pharmaceutical Bulletin. 2022.DOI: 10.1248/bpb.b22-00171 Source

Mechanisms involved in mitoquinone-mediated protection of H9C2 cells against anti-cancer drug doxorubicin-induced cardiotoxicity. Mercado, Kelly. PCOM Biomedical Studies Student Scholarship. 2022.Source

Cationic antimicrobial peptide NRC-03 induces oral squamous cell carcinoma cell apoptosis via CypD-mPTP axis-mediated mitochondrial oxidative stress. Hou, Dan et al. Redox Biology. 2022.DOI: 10.1016/j.redox.2022.102355 Source

Depletion of COPI in cancer cells: the role of reactive oxygen species in the induction of lipid accumulation, noncanonical lipophagy and apoptosis. Gasparian, A. et al. Molecular Biology of the Cell. 2022.DOI: 10.1091/mbc.E21-08-0420 Source

Viscoelastic Liquid Matrix with Faster Bulk Relaxation Time Reinforces the Cell Cycle Arrest Induction of the Breast Cancer Cells via Oxidative Stress. Najmina, Mazaya et al. International Journal of Molecular Sciences. 2022.DOI: 10.3390/ijms232314637 Source

A Mitochondrial Switch Promotes Tumor Metastasis. Porporato, Paolo E. et al. Cell Reports. 2014.DOI: 10.1016/j.celrep.2014.06.043 Source

Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions. Liou, Geou-Yarh et al. Cell Reports. 2016.DOI: 10.1016/j.celrep.2016.02.029 Source

Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. DeHart, David N. et al. Biochemical Pharmacology. 2018.DOI: 10.1016/j.bcp.2017.12.022 Source

Activation of c-Met in cancer cells mediates growth-promoting signals against oxidative stress through Nrf2-HO-1. Chakraborty, Samik et al. Oncogenesis. 2019.DOI: 10.1038/s41389-018-0116-9 Source

DNA damage signalling from the placenta to foetal blood as a potential mechanism for childhood leukaemia initiation. Mansell, Els et al. Scientific Reports. 2019.DOI: 10.1038/s41598-019-39552-0 Source

A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Quach, Christine et al. Nature Communications. 2019.DOI: 10.1038/s41467-019-13475-w Source

Molecular mechanism of mitoquinol mesylate in mitigating the progression of hepatocellular carcinoma—in silico and in vivo studies. Sulaimon, Lateef Adegboyega et al. Journal of Cellular Biochemistry. 2021.DOI: 10.1002/jcb.29937 Source

Mitoquinol mesylate alleviates oxidative damage in cirrhotic and advanced hepatocellular carcinogenic rats through mitochondrial protection and antioxidative effects. Sulaimon, Lateef A. et al. Advances in Redox Research. 2021.DOI: 10.1016/j.arres.2021.100014 Source

Doxorubicin suppresses chondrocyte differentiation by stimulating ROS production. Wu, Cheng et al. European Journal of Pharmaceutical Sciences. 2021.DOI: 10.1016/j.ejps.2021.106013 Source

Mitochondrial ROS drive resistance to chemotherapy and immune-killing in hypoxic non-small cell lung cancer. Salaroglio, Iris C. et al. Journal of Experimental & Clinical Cancer Research. 2022.DOI: 10.1186/s13046-022-02447-6 Source

Abstract PS17-55: Reactive oxygen species scavengers in triple negative breast cancer. Duhoux, Francois P et al. Cancer Research. 2021.DOI: 10.1158/1538-7445.SABCS20-PS17-55 Source


Targeting mitochondrial fitness as a strategy for healthy vascular aging. Rossman et al. Clin Sci (Lond). 2020 134 (12): 1491-1519DOI: 10.1042/CS20190559 Source

Mitochondria-targeted nutraceuticals in sports medicine: A new perspective. Ostojic SM. Res Sports Med. 2016;25(1):91-100DOI: 10.1080/15438627.2016.1258646 Source

Barbato JC. Hypertension. 2009;54(2):222-3DOI: 10.1161/HYPERTENSIONAHA.109.135533

MitoQ- A mitochondria-targeted antioxidant. Tauskela JS et al. IDrugs. 2007;10(6):399-412

Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Smith RA et al. Annals of the New York Academy of Sciences. 2011;1201:96-103DOI: 10.1111/j.1749-6632.2010.05627.x Source

The effect of MitoQ on aging-related biomarkers: A systematic review and meta-analysis. Braakhuis A et al. Oxidative Medicine and Cellular Longevity. Volume 2018, Article ID 8575263DOI: 10.1155/2018/8575263 Source