RESEARCH STUDIES & CLINICAL TRIALS

Founded in science, studied around the world, clinically tested.

MitoQ encourages the scientific community to explore and discover the benefits of our ingredient Mitoquinol Mesylate.

INDEPENDENT RESEARCH

19 clinical trials, 750+ peer-reviewed scientific papers, and over $60 million invested in a broad range of independent studies.

TOP UNIVERSITIES

Harvard University, UCLA, University of Cambridge and more leading institutions around the world have studied MitoQ’s cellular health optimization.

CONTINUED INNOVATION

Our product development team continues to explore the leading edge of cellular health science, resulting in over 60 global patents for our molecular technology.

Meet our MitoQ science experts

a headshot of Professor Mike Murphy in cell shape

PROFESSOR MIKE MURPHY

Ph.D., MitoQ co-founder and Professor of Mitochondrial Redox Biology at the University of Cambridge

a headshot of Dr Richard Siow in cell shape

DR RICHARD SIOW

Ph.D., Director of Ageing Research at King’s College London, Honorary Secretary General of European Society of Preventive Medicine

a headshot of Professor Marcia Haigis in cell shape

PROFESSOR MARCIA HAIGIS

Ph.D., Professor of Cell Biology at Harvard Medical School, National Academy of Medicine's Emerging Leader in Health and Medicine

a headshot of Professor Doug Seals in cell shape

PROFESSOR DOUG SEALS

Ph.D., Professor in Integrative Physiology at the University of Colorado Boulder

a headshot of Dr Molly Maloof in cell shape

DR MOLLY MALOOF

M.D., author, entrepreneur, lecturer, medical advisor

Kaytee Boyd

KAYTEE BOYD

BSC, B PHED, CHEK HLC II, Integrative nutritionist

750+ independent high-impact, peer-reviewed journals, and 19 clinical trials. Here are some highlights.

HEART

Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults

Rossman MJ et al. Hypertension. 71:1056-1063 (2018)

DOI: DOI: 10.1161/HYPERTENSIONAHA.117.10787 source

MitoQ decreases free radical production by mitochondria, and significantly supports arterial function in older adults and therefore the health of the arteries. In this clinical trial it was confirmed that: MitoQ greatly improved the ability of arteries to dilate (by 42%). MitoQ significantly supports the health of aorta and factors related to heart lipid metabolism.

Read the summary

EXERCISE/CELL HEALTH

The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage

Williamson et al. REDOX Biology

DOI: DOI: 10.1016/j.redox.2020.101673 Source

High-intensity exercise increases our respiration rate and can lead to oxidative stress. The free radicals that are produced during exercise are known to damage our DNA. This study showed that after 3 weeks of chronic supplementation, 20 mg/day of MitoQ was able to protect against exercise-induced DNA damage in young healthy men (20-30 years old). MitoQ significantly reduced both nuclear and mitochondrial DNA damage in the blood and in muscle tissue after intense exercise.

Read the study

EXERCISE

Mitochondria-targeted antioxidant supplementation improves 8km time trial performance in middle-aged trained male cyclist

Broome SC et al. J. Int. Soc. Sports Nutr. 18, 58 (2021).

DOI: DOI: 10.1186/s12970-021-00454-0 source

The study showed that after 4 weeks of MitoQ supplementation, the mean completion time for a time trial was 10.8 seconds faster and an increase of 10 watts of power. MitoQ supplementation may be an effective nutritional strategy to attenuate exercise-induced increases in oxidative damage to lipids and improve cycling performance.

Read the summary

SAFETY

The influence of acute high dose MitoQ on urinary kidney injury markers in healthy adults

Linder BA et al. The FASEB Journal. 36, S1 (2022).

DOI: DOI: 10.1096/fasebj.2022.36.S1.L7715 source

Results found that acute, high-dose MitoQ supplementation did not result in high concentrations of kidney injury biomarkers compared to placebo samples. Preliminary evidence is that ongoing MitoQ use in the normal range (10mg-20mg) supports kidney health.

Read the summary

CELL HEALTH

MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle‑aged men

Pham et al. European Journal of Applied Physiology

DOI: DOI: 10.1007/s00421-020-04396-4 Source

Mitochondria are the main source of oxidative stress in our bodies. Oxidative stress is caused by an imbalance of free radicals and our levels of antioxidants. Over time, oxidative stress can lead to cell damage and have flow-on effects for our health. This study compared the effects of 20 mg/day MitoQ and 200 mg/day CoQ10 on biomarkers of mitochondrial health and oxidative stress in healthy middle-aged men (40-60 years old). After six weeks of supplementation, MitoQ was found to be 24% more effective than CoQ10 at reducing hydrogen peroxide levels in the mitochondria during states of stress. Unlike CoQ10, MitoQ supplementation also increased levels of the important internal antioxidant, catalase, by 36%.

Read the study

EXERCISE

MitoQ supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men

Broome et al. REDOX Biology

DOI: DOI: 10.1016/j.redox.2022.102341 Source

Regular high-intensity exercise leads to adaptations in our bodies and mitochondria that help improve performance and recovery. This study showed that in untrained middle-aged men, just 10 days of supplementation of 20mg/day MitoQ improved exercise performance in middle-aged men (35-55 years old). MitoQ significantly increased peak power generation during a 20km cycling trial compared to placebo. This result was accompanied by an increase in skeletal muscle PGC1α mRNA expression, a gene activator associated with the regulation of mitochondrial health and function.

Read the study

More studies

*Intended for a researcher audience, for research purposes only

VASCULAR FUNCTION (25)

HIF-1α promotes cellular growth in lymphatic endothelial cells exposed to chronically elevated pulmonary lymph flow. Boehme JT et al. Scientific Reports. 2016DOI: 10.1038/s41598-020-80882-1 Source

Mitoquinone (MitoQ) Inhibits Platelet Activation Steps by Reducing ROS Levels. Méndez D et al. International Journal of Molecular Sciences. 2021DOI: 10.3390/ijms21176192 Source

Effect of treadmill exercise and MitoQ treatment on vascular function in D-galactose-induced senescent mice. Kim DW. 2020DOI: 10.24985/kjss.2019.30.4.689 Source

Mitoquinone attenuates vascular calcification by suppressing oxidative stress and reducing apoptosis of vascular smooth muscle cells via the Keap1/Nrf2 pathway. Cui, L et al. Free Radical Biology and Medicine. 2020DOI: 10.1016/j.freeradbiomed.2020.09.028 Source

Doxorubicin-Induced Oxidative Stress and Endothelial Dysfunction in Conduit Arteries Is Prevented by Mitochondrial-Specific Antioxidant Treatment. Clayton ZS et al. JACC. CardioOncology. 2021DOI: 10.1016/j.jaccao.2020.06.010 Source

Mitochondrial reactive oxygen species scavenging attenuates thrombus formation in a murine model of sickle cell disease. Annarapu GK et al. Journal of thrombosis and haemostasis: JTH. 2022DOI: 10.1111/jth.15298 Source

Reactive Oxygen Species are Essential for Placental Angiogenesis During Early Gestation. Yang Y et al. Oxidative medicine and cellular longevity. 2014DOI: 10.1155/2022/4290922 Source

Mitoquinone ameliorates cigarette smoke-induced airway inflammation and mucus hypersecretion in mice. Yang D et al. International Immunopharmacology. 2021DOI: 10.1016/j.intimp.2020.107149 Source

Autophagy-mitophagy induction attenuates cardiovascular inflammation in a murine model of Kawasaki disease vasculitis. Marek-Iannucci S et al. JCI Insight. 2021DOI: 10.1172/jci.insight.151981 Source

MicroRNA-210-mediated mtROS confer hypoxia-induced suppression of STOCs in ovine uterine arteries. Hu XQ et al. British Journal of Pharmacology. 2022DOI: 10.1111/bph.15914 Source

Mitochondrial-targeted antioxidant supplementation for improving age-related vascular dysfunction in humans: A study protocol. Murray K.O. et al. Frontiers in Physiology. 2022DOI: 10.3389/fphys.2022.980783 Source

Acute mitochondrial antioxidant intake improves endothelial function, antioxidant enzyme activity, and exercise tolerance in patients with peripheral artery disease. Park SY et al. American Journal of Physiology. Heart and Circulatory Physiology. 2020DOI: 10.1152/ajpheart.00235.2020 Source

Effect of Combined Endurance Training and MitoQ on Cardiac Function and Serum Level of Antioxidants, NO, miR-126, and miR-27a in Hypertensive Individuals. Masoumi-Ardakani et al. BioMed Research International. 2022DOI: 10.1155/2022/8720661 Source

Vasodilatory and vascular mitochondrial respiratory function with advancing age: Evidence of a free radically-mediated link in the human vasculature. Park SH et al. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2020DOI: 10.1152/ajpregu.00268.2019 Source

Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Rossman MJ et al. Hypertension (Dallas, Tex.: 1979). 2018DOI: 10.1161/HYPERTENSIONAHA.117.10787 Source

Reactive oxygen species induced Ca2+ influx via TRPV4 and microvascular endothelial dysfunction in the SU5416/hypoxia model of pulmonary arterial hypertension. Suresh K et al. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2020DOI: 10.1152/ajplung.00430.2017 Source

Age-related endothelial dysfunction in human skeletal muscle feed arteries: the role of free radicals derived from mitochondria in the vasculature. Park S Y et al. Acta Physiologica (Oxford, England). 2018DOI: 10.1111/apha.12893 Source

Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice. Gioscia-Ryan RA et al. Journal of Applied Physiology (Bethesda, Md.: 1985). 2018DOI: 10.1152/japplphysiol.00670.2017 Source

Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice. Gioscia-Ryan RA et al. Aging (Albany NY). 2019DOI: 10.18632/aging.101099 Source

Mitochondria-targeted antioxidant MitoQ intercepts superoxide radical formation under acute hypoxia: Evaluation of the oxidative stress in murine pulmonary arterial smooth muscle cells by electron paramagnetic resonance spectroscopy. Scheibe S et al. Free Radical Biology and Medicine. 2018DOI: 10.1016/j.freeradbiomed.2016.04.106 Source

Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress. Ma S et al. American Journal of Hypertension. 2016DOI: 10.1093/ajh/hpt225 Source

Redox signaling via oxidative inactivation of PTEN modulates pressure-dependent myogenic tone in rat middle cerebral arteries. Gebremedhin D et al. PLoS One. 2012DOI: 10.1371/journal.pone.0068498 Source

Mitochondrial reactive oxygen species enhance AMP-activated protein kinase activation in the endothelium of patients with coronary artery disease and diabetes. Mackenzie RM et al. Clinical Science. 2014DOI: 10.1042/CS20120239 Source

Evidence for a relationship between mitochondrial Complex I activity and mitochondrial aldehyde dehydrogenase during nitroglycerin tolerance: Effects of mitochondrial antioxidants. Garcia-Bou R et al. Biochim Biophys Acta (BBA)-Bioenergetics. 2013DOI: 10.1016/j.bbabio.2012.02.013 Source

Complex I dysfunction and tolerance to nitroglycerin: an approach based on mitochondrial-targeted antioxidants. Esplugues JV et al. Circulation Resarch. 2012DOI: 10.1161/01.RES.0000250430.62775.99 Source

CARDIAC HEALTH (27)

Prohibitin-1 Is a Dynamically Regulated Blood Protein With Cardioprotective Effects in Sepsis. Mattox TA et al. Journal of the American Heart Association. 2021DOI: 10.1161/JAHA.120.019877 Source

Ceramide modulates electrophysiological characteristics and oxidative stress of pulmonary vein cardiomyocytes. Huang SY et al. European Journal of Clinical Investigation. 2022DOI: 10.1111/eci.13690 Source

[Inhibition of mitochondrial reactive oxygen species reduces high glucose-induced pyroptosis and ferroptosis in H9C2 cardiac myocytes]. Wang J et al. Nan Fang Yi Ke Da Xue Xue Bao = Journal of Southern Medical University. 2021DOI: 10.12122/j.issn.1673-4254.2021.07.03 Source

mTOR contributes to endothelium-dependent vasorelaxation by promoting eNOS expression and preventing eNOS uncoupling. Wang Y et al. Communications Biology. 2022DOI: 10.1038/s42003-022-03653-w Source

Endurance training and MitoQ supplementation increases PERM1 and SMYD1 gene expression and improves hemodynamic parameters in cardiac muscle of male Wistar rats. Mahboube ST et al. 2022DOI: 10.21203/rs.3.rs-1803848/v1 Source

Mitochondrial targeted antioxidants, mitoquinone and SKQ1, not vitamin C, mitigate doxorubicin-induced damage in H9c2 myoblast: pretreatment vs. co-treatment. Sacks B et al. BMC Pharmacology and Toxicology. 2021DOI: 10.1186/s40360-021-00518-6 Source

MicroRNA-210 Controls Mitochondrial Metabolism and Protects Heart Function in Myocardial Infarction. Song R et al. Circulation. 2022DOI: 10.1161/CIRCULATIONAHA.121.056929 Source

Mitochondrial Oxidative Stress Induces Cardiac Fibrosis in Obese Rats through Modulation of Transthyretin. Martínez-Martínez E et al. International Journal of Molecular Sciences. 2022DOI: 10.3390/ijms23158080 Source

The Crosstalk between Cardiac Lipotoxicity and Mitochondrial Oxidative Stress in the Cardiac Alterations in Diet-Induced Obesity in Rats - PubMed. Jiménez-González S et al. 2020DOI: 10.3390/cells9020451. Source

The Interplay of Mitochondrial Oxidative Stress and Endoplasmic Reticulum Stress in Cardiovascular Fibrosis in Obese Rats. Souza-Neto FV et al. Antioxidants (Basel, Switzerland). 2021DOI: 10.3390/antiox10081274 Source

Mitochondrial Oxidative Stress Promotes Cardiac Remodeling in Myocardial Infarction through the Activation of Endoplasmic Reticulum Stress. Souza-Neto FV et al. Antioxidants (Basel, Switzerland). 2022DOI: 10.3390/antiox11071232 Source

Effect of mitochondrial-targeted antioxidants on glycaemic control, cardiovascular health, and oxidative stress in humans: A systematic review and meta-analysis of randomized controlled trials. Mason SA et al. Diabetes, Obesity & Metabolism. 2022DOI: 10.1111/dom.14669 Source

Endurance training and MitoQ supplementation improve spatial memory, VEGF expression, and neurogenic factors in hippocampal tissue of rats. Zadeh HJ et al. Journal of Clinical and Translational Research. 2023DOI: 10.18053/jctres.09.202301.001 Source

Chronic mitochondria antioxidant treatment in older adults alters the circulating milieu to improve endothelial cell function and mitochondrial oxidative stress. Murray KO et al. American Journal of Physiology-Heart and Circulatory Physiology. 2023DOI: 10.1152/ajpheart.00270.2023 Source

Cyclovirobuxine D protects against diabetic cardiomyopathy by activating Nrf2-mediated antioxidant responses. Jiang Z et al. Scientific Reports. 2020DOI: 10.1038/s41598-020-63498-3 Source

Regulation of mitochondrial fragmentation in microvascular endothelial cells isolated from the SU5416/hypoxia model of pulmonary arterial hypertension. Suresh K et al. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2019DOI: 10.1152/ajplung.00396.2018 Source

Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice. Goh KY et al. Redox Biology. 2019DOI: 10.1016/j.redox.2019.101100 Source

G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Wang H et al. Translational Research. 2018DOI: 10.1016/j.trsl.2018.04.005 Source

Ice-free cryopreservation of heart valve tissue: The effect of adding MitoQ to a VS83 formulation and its influence on mitochondrial dynamics. Sui Y et al. Cryobiology. 2018DOI: 10.1016/j.cryobiol.2018.01.008 Source

P 165 - The role of mitochondrial reactive oxygen species in the response of the pulmonary vasculature to hypoxia and right heart remodeling. Scheibe S et al. Free Radical Biology and Medicine. 2017DOI: 10.1016/j.freeradbiomed.2017.04.250 Source

Differences in the profile of protection afforded by TRO40303 and mild hypothermia in models of cardiac ischemia/reperfusion injury. Hannson MJ et al. European Journal of Pharmacology. 2015DOI: 10.1016/j.ejphar.2015.04.009 Source

Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. Yancey DM et al. American Journal of Physiology-Heart and Circulatory Physiology. 2015DOI: 10.1152/ajpheart.00638.2014 Source

Mitochondria transmit apoptosis signalling in cardiomyocyte-like cells and isolated hearts exposed to experimental ischemia-reperfusion injury. Neuzil J et al. Redox Report: Communications in Free Radical Research. 2007DOI: 10.1179/135100007X200227 Source

Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Davidson SM et al. Cardiovascular Research. 2012DOI: 10.1093/cvr/cvr349 Source

Resolution of Mitochondrial Oxidative Stress Rescues Coronary Collateral Growth in Zucker Obese Fatty Rats. Fen Pung Y et al. Arteriosclerosis, Thrombosis and Vascular Biology. 2012DOI: 10.1161/ATVBAHA.111.241802 Source

Novel insights into interactions between mitochondria and xanthine oxidase in acute cardiac volume overload. Gladden JD et al. Free Radical Biology and Medicine. 2011DOI: 10.1016/j.freeradbiomed.2011.08.022 Source

Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. Adlam VJ et al. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2005DOI: 10.1096/fj.05-3718com Source

NEUROLOGICAL HEALTH (46)

Generation of mitochondrial reactive oxygen species is controlled by ATPase inhibitory factor 1 and regulates cognition. Esparza-Moltó PB et al. PLoS biology. 2021DOI: 10.1371/journal.pbio.3001252 Source

Preeclamptic placentae release factors that damage neurons: implications for foetal programming of disease. Scott H et al. Neuronal Signaling. 2018DOI: 10.1042/NS20180139 Source

The Role of Pink1-Mediated Mitochondrial Pathway in Propofol-Induced Developmental Neurotoxicity. Liang C et al. Neurochemical Research. 2021DOI: 10.1007/s11064-021-03359-1 Source

Accelerated aging of the brain transcriptome by the common chemotherapeutic doxorubicin. Cavalier AN et al. Experimental Gerontology. 2021DOI: 10.1016/j.exger.2021.111451 Source

Mitochondrial Reactive Oxygen Species Mediate Activation of TRPV1 and Calcium Entry Following Peripheral Sensory Axotomy - PubMed. Kievit B. 2022DOI: 10.3389/fnmol.2022.852181 Source

Recent Advances in Molecular Pathways and Therapeutic Implications Targeting Mitochondrial Dysfunction for Alzheimer's Disease. Dhapola R et al. Molecular Neurobiology. 2022DOI: 10.1007/s12035-021-02612-6 Source

Mitigation of CNS oxygen toxicity seizures: evaluating the neuroprotective effects of L-NAME versus Mitoquinone during exposure to 5 ATA O2 in freely behaving Sprague-Dawley rats. Hinojo CM et al. The FASEB Journal. 2022DOI: 10.1096/fasebj.2022.36.S1.R4180 Source

Inhibiting amyloid beta (1-42) peptide-induced mitochondrial dysfunction prevents the degradation of synaptic proteins in the entorhinal cortex. Olajide OJ et al. Frontiers in Aging Neuroscience. 2022DOI: 10.3389/fnagi.2022.960314 Source

Long-term mitochondrial stress induces early steps of Tau aggregation by increasing reactive oxygen species levels and affecting cellular proteostasis. Samluk L et al. Molecular Biology of the Cell. 2022DOI: 10.1091/mbc.E21-11-0553 Source

Perturbed actin cap as a new personalized biomarker in primary fibroblasts of Huntington's disease patients. Gharaba S et al. Frontiers in Cell and Developmental Biology. 2023DOI: 10.3389/fcell.2023.1013721 Source

Apolipoprotein E Polymorphism Impacts White Matter Injury Through Microglial Phagocytosis After Experimental Subarachnoid Hemorrhage. Li C et al. Neuroscience. 2023DOI: 10.1016/j.neuroscience.2023.05.020 Source

Quinones as Neuroprotective Agents. Cores Á et al. Antioxidants. 2023DOI: 10.3390/antiox12071464 Source

A mitochondrial-targeted antioxidant (MitoQ) improves motor coordination and reduces Purkinje cell death in a mouse model of ARSACS. Márquez BT et al. Neurobiology of Disease. 2023DOI: 10.1016/j.nbd.2023.106157 Source

CREB Protects against Temporal Lobe Epilepsy Associated with Cognitive Impairment by Controlling Oxidative Neuronal Damage. Xing et al. Neurodegenerative Diseases. 2020DOI: 10.1159/000507023 Source

Neuroprotective Benefits of Exercise and MitoQ on Memory Function, Mitochondrial Dynamics, Oxidative Stress, and Neuroinflammation in D-Galactose-Induced Aging Rats. Jeong et al. Brain Sciences. 2021DOI: 10.3390/brainsci11020164 Source

Mitochondria: Novel Mechanisms and Therapeutic Targets for Secondary Brain Injury After Intracerebral Hemorrhage. Chen et al. Frontiers in Aging Neuroscience. 2021DOI: 10.3389/fnagi.2020.615451 Source

Treating Neurodegenerative Disease with Antioxidants: Efficacy of the Bioactive Phenol Resveratrol and Mitochondrial-Targeted MitoQ and SkQ. Shinn et al. Antioxidants. 2021DOI: 10.3390/antiox10040573 Source

Effective therapeutic strategies in a preclinical mouse model of Charcot–Marie–Tooth disease. Nuevo-Tapioles et al. Human Molecular Genetics. 2021DOI: 10.1093/hmg/ddab207 Source

Mitochondrial, exosomal miR137-COX6A2 and gamma synchrony as biomarkers of parvalbumin interneurons, psychopathology, and neurocognition in schizophrenia. Khadimallah et al. Molecular Psychiatry. 2022DOI: 10.1038/s41380-021-01313-9 Source

Mitoquinone supplementation alleviates oxidative stress and pathologic outcomes following repetitive mild TBI at a chronic time point. Tabet et al. Experimental Neurology. 2022DOI: 10.1016/j.expneurol.2022.113987 Source

The peroxisomal fatty acid transporter ABCD1/PMP-4 is required in the C. elegans hypodermis for axonal maintenance: A worm model for adrenoleukodystrophy. Coppa A et al. Free Radical Biology and Medicine. 2020DOI: 10.1016/j.freeradbiomed.2020.01.177 Source

Mitoquinone alleviates vincristine-induced neuropathic pain through inhibiting oxidative stress and apoptosis via the improvement of mitochondrial dysfunction. Chen X et al. Biomedicine & Pharmacotherapy. 2020DOI: 10.1016/j.biopha.2020.110003 Source

Involvement of oxidative stress and mitochondrial mechanisms in air pollution-related neurobiological impairments. Salvi A et al. Neurobiology of Stress. 2020DOI: 10.1016/j.ynstr.2019.100205 Source

Role of the mitochondrial calcium uniporter in Mg2+-free-induced epileptic hippocampal neuronal apoptosis. Li Y et al. International Journal od Neuroscience. 2020DOI: 10.1080/00207454.2020.1715978 Source

Neuroprotective effects of mitoquinone and oleandrin on Parkinson’s disease model in zebrafish. Ünal I et al. International Journal of Neuroscience. 2020DOI: 10.1080/00207454.2019.1698567 Source

The interplay between redox signalling and proteostasis in neurodegeneration: In vivo effects of a mitochondria-targeted antioxidant in Huntington's disease mice. Pinho BR et al. Free Radical Biology and Medicine. 2020DOI: 10.1016/j.freeradbiomed.2019.11.021 Source

Mitophagy reduces oxidative stress via Keap1/Nrf2/PHB2 pathway after SAH in rats. Zhang T et al. Stroke. 2019DOI: 10.1161/STROKEAHA.118.021590 Source

Mitoquinone attenuates blood-brain barrier disruption through Nrf2/PHB2/OPA1 pathway after subarachnoid hemorrhage in rats. Zhang et al. Experimental Neurology. 2019DOI: 10.1016/j.expneurol.2019.02.009 Source

Therapeutic potential of the mitochondria-targeted antioxidant MitoQ in mitochondrial-ROS induced sensorineural hearing loss caused by Idh2 deficiency. Kim YR et al. Redox Biology. 2019DOI: 10.1016/j.redox.2018.11.013 Source

Effects of NADPH Oxidase Inhibitors and Mitochondria-Targeted Antioxidants on Amyloid β1-42-Induced Neuronal Deaths in Mouse Mixed Cortical Cultures. Hwang S et al. Chonnam Medical Journal. 2018DOI: 10.4068/cmj.2018.54.3.159 Source

Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Zhou J et al. American Journal of Translational Research. 2018;10(6):1887-1899. eCollection 2018Source

Neuronal Dysfunction Associated with Cholesterol Deregulation. Marcuzzi A et al. International Journal of Molecular Sciences. 2018DOI: 10.3390/ijms19051523 Source

Mitigating peroxynitrite mediated mitochondrial dysfunction in aged rat brain by mitochondria-targeted antioxidant MitoQ. Maiti AK et al. Biogerontology. 2018DOI: 10.1007/s10522-018-9756-6 Source

Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Jelinek A et al. Free Radical Biology and Medicine. 2018DOI: 10.1016/j.freeradbiomed.2018.01.019 Source

Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo. Nussbaumer M et al. Neuropsychopharmacology. 2016DOI: 10.1038/npp.2015.341 Source

Mitochondrial redox and pH signaling occurs in axonal and synaptic organelle clusters. Breckwoldt MO et al. Scientific Reports. 2016DOI: 10.1038/srep23251 Source

Mitochondria-derived reactive oxygen species mediate caspase-dependent and -independent neuronal deaths. Manus MJ et al. Mol Cell Neurosci. 2014DOI: 10.1016/j.mcn.2014.09.002 Source

The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Saez-Atienzar S et al. Cell Death & Disease. 2014DOI: 10.1038/cddis.2014.320 Source

Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Davies Al et al. Annals of Neurology. 2013DOI: 10.1002/ana.24006 Source

Glucagon-Like Peptide-1 Cleavage Product GLP-1(9-36) Amide Rescues Synaptic Plasticity and Memory Deficits in Alzheimer's Disease Model Mice. Ma T et al. The Journal of Neuroscience. 2012DOI: 10.1523/JNEUROSCI.2107-12.2012 Source

Amyloid β-Induced Impairments in Hippocampal Synaptic Plasticity Are Rescued by Decreasing Mitochondrial Superoxide. Ma T et al. The Journal of Neuroscience. 2011DOI: 10.1523/JNEUROSCI.6566-10.2011 Source

Neuroprotection by a mitochondria-targeted drug in a Parkinson's disease model. Ghosh A et al. Free Radical Biology and Medicine. 2010DOI: 10.1016/j.freeradbiomed.2010.08.028 Source

Mitochondria-Targeted Antioxidants Protect Against Amyloid-β Toxicity in Alzheimer's Disease Neurons. Manczak M et al. Journal of Alzheimer’s Disease. 2010DOI: 10.3233/JAD-2010-100564 Source

Mitochondrial Dysfunction in SOD1G93A-Bearing Astrocytes Promotes Motor Neuron Degeneration: Prevention by Mitochondrial-Targeted Antioxidants. Cassina P et al. The Journal of Neuroscience. 2008DOI: 10.1523/JNEUROSCI.5308-07.2008 Source

Mitochondrial Superoxide Production and Nuclear Factor Erythroid 2-Related Factor 2 Activation in p75 Neurotrophin Receptor-Induced Motor Neuron Apoptosis. Pehar M et al. The Journal of Neuroscience. 2007DOI: 10.1523/JNEUROSCI.0823-07.2007 Source

Manganese potentiates lipopolysaccharide-induced expression of NOS2 in C6 glioma cells through mitochondrial-dependent activation of nuclear factor kappaB. Barhoumi R et al. Molecular Brain Research. 2004DOI: 10.1016/j.molbrainres.2003.12.009 Source

LIVER HEALTH (22)

Hao L et al. Redox Biology. 2018;14: 626-636DOI: 10.1016/j.redox.2017.11.005 Source

Weiskirchen R. Liver International. 2017;37(7):963-965DOI: 10.1111/liv.13442 Source

Vilaseca M et al. Liver International. 2017;37(7):1002-1012DOI: 10.1111/liv.13436 Source

Hoyt LR et al. Redox Biology. 2017; 12: 883–896DOI: 10.1016/j.redox.2017.04.020 Source

Rehman H et al. International Journal of Physiology, Pathophysiology and Pharmacology. 2016; 8(1): 14–27

Mukhopadhyay P et al. Free Radical Biology and Medicine. 2012;53(5):1123–1138DOI: 10.1016/j.freeradbiomed.2012.05.036 Source

Chacko BK et al. Hepatology. 2011; 54(1): 153–163DOI: 10.1002/hep.24377

Gane EJ et al. Liver International. 2010;30(7):1019-26DOI: 10.1111/j.1478-3231.2010.02250.x

Froehlich E et al. J Hepatol. 44: S267-S267. 41st Annual Meeting of the European Association for the Study of the Liver; APR 26-30, 2006; Vienna, AUSTRIA. [Poster]

Davies A et al. Journal of Hepatology. 2002;36(1):195-196DOI: 10.1016/S0168-8278(02)80692-4

Wu Y et al. International Immunopharmacology. 2020 Jan 10;80:106189.DOI: 10/1016/j.intimp.2020.106189

Sen Roy S et al. HIV Medicine. 2019;20:201-231.DOI: 10.1111/hiv.12814

Chacko BK et al. Hepatology. 2011; 54(1): 153–163.DOI: 10.1002/hep.24377

Gane EJ et al. Liver International. 2010;30(7):1019-26.DOI: 10.1111/j.1478-3231.2010.02250.x

Davies A et al. Journal of Hepatology. 2002;36(1):195-196.DOI: 10.1016/S0168-8278(02)80692-4

Desta YT et al. International Immunopharmacology. 2020 May 4;84:106518DOI: 10.1016/j.intimp.2020.106518 Source

Wu Y et al. International Immunopharmacology. 2020 Jan 10;80:106189DOI: 10/1016/j.intimp.2020.106189

Sen Roy S et al. HIV Medicine. 2019;20:201-231DOI: 10.1111/hiv.12814

Turkseven et al. American Journal of Physiology – Gastrointestinal and Liver Physiology. 2019 Dec 9DOI: 10.1152/ajpgi.00135.2019 Source

Li G et al. Nutrients. 2019, 11, 1669DOI: 10.3390/nu11071669 Source

van Golen RF et al. Biochimica Biophysica Acta (BBA) - Molecular Basis of Disease. 2019;pii: S0925-4439(19)30014-6DOI: 10.1016/j.bbadis.2019.01.014 Source

Turkseven S et al. Journal of Hepatology. 2018; 68:S466-S467DOI: 10.1016/S0168-8278(18)31178-4 Source

KIDNEY (18)

Gao P et al. Clinical Science (London, England: 1979). 2020 Mar 13DOI: 10.1042/CS20200005 Source

Miao J et al. Aging Cell. 2019;00:e13004DOI: 10.111/acel.13004

Gottwald EM et al. Physiological Reports. 2018;6(7):e13667DOI: 10.14814/phy2.13667

Liu X et al. Magnetic Resonance in Medicine. 2018;79(3):1559-1567DOI: 10.1002/mrm.26772

Han Y et al. Redox Biology. 2018;16: 32-46DOI: 10.1016/j.redox.2018.02.013 Source

Ishimoto Y et al. Molecular and Cellular Biology. 2017;37: 24 e00337-17DOI: 10.1128/MCB.00337-1 Source

Hamed, M. O. Doctoral thesis. Sep 2017DOI: 10.17863/CAM.13853

Xiao L et al. Redox Biology. 2017; 11: 297–311DOI: 10.1016/j.redox.2016.12.022

Ward MS et al. Scientific Reports 2017. 7: 15190DOI: 10.1038/s41598-017-15589-x

Galaretta CI et al. American Journal of Physiology – Renal Physiology. 2015;308(10): F1155-66DOI: 10.1152/ajprenal.00591.2014 Source

Dare AJ et al. Redox Biology. 2015; 5: 163–168DOI: 10.1016/j.redox.2015.04.008

Gu Q et al. Molecular and Cellular Biochemistry. 2015;406(1-2):217-25DOI: 10.1007/s11010-015-2439-6 Source

Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK) cells. Marine A et al. Redox Biology. 2014; 2: 348–357DOI: 10.1016/j.redox.2014.01.014 Source

Reily C. Free Radical Biology and Medicine. 2014; 49:S40DOI: 10.1016/j.freeradbiomed.2010.10.083

Patil NK et al. Federation of American Societies of Experimental Biology. 2013 27:1_supplement, 889.8-889.8Source

Parajuli N et al. PLoS ONE. 2012;7(11)DOI: 10.1371/journal.pone.0048590 Source

Mitchell T et al. The Journal of Pharmacology and Experimental Therapeutics. 2011;336(3):682-692DOI: 10.1124/jpet.110.176743 Source

Chacko BK et al. Biochemical Journal. 2010; 432(Pt 1): 9–19DOI: 10.1042/BJ20100308

METABOLIC HEALTH (20)

Fink B et al. Free Radical Research. 2020 Apr 24:1-8DOI: 10.1080/10715762.2020.1754409

Walenna NF et al. Journal Biological Chemistry. 2020 Jan 28DOI: 10.1074/jbc.RA119.010683 Source

Marin-Royo G et al. The Journal of the Federation of American Societies for Experimental Biology. 2019DOI: 10.1096/fj.201900347RR Source

Mitochondrial targeting of antioxidants alters pancreatic acinar cell bioenergetics and determines cell fate. Armstrong JA et al. International Journal of Molecular Sciences. 2019;20(7), 1700DOI: https://www.mdpi.com/1422-0067/20/7/1700

Escribano-Lopez I et al. Cellular Physiology & Biochemistry. 2019;52(2):186-197DOI: 10.33594/000000013

The impact of age and sex on body composition and glucose sensitivity in C57Bl/6J mice. Reynolds TH et al. Physiological Reports. 2019;7(3):e13995DOI: 10.14814/phy2.13995

Imai Y et al. Pharmacology Research & Perspectives. 2018;6(3):e00393DOI: 10.1002/prp2.393 Source

Escribano-López I et al. Free Radical Biology and Medicine. 2018;120(1): S79-S80DOI: 10.1016/j.freeradbiomed.2018.04.263

Ju L et al. Oncotarget. 2017; 8(59): 99931–99939DOI: 10.18632/oncotarget.21965

Fink BD et al. Pharmacology Research & Perspectives. 2017;5(2): e00301DOI: 10.1002/prp2.301 Source

Escribano-Lopez et al. Redox Biology. 2016; 10: 200–205DOI: 10.1016/j.redox.2016.10.017

Coudray C et al. British Journal of Nutrition. 2016; 115(7):1155-66DOI: 10.1017/S0007114515005528 Source

Fouret G et al. Biochimica et Biophys Acta (BBA) - Bioenergetics. 2015; 1847(10):1025-35DOI: 10.1016/j.bbabio.2015.05.019 Source

Li J et al. Scientific Reports. 2015;5:12724DOI: 10.1038/srep12724 Source

Huang W et al. Mediators of Inflammation. 2015: 901780DOI: 10.1155/2015/901780

Fink BD et al. The Journal of Pharmacology and Experimental Therapeutics. 2014; 351(3): 699–708DOI: 10.1124/jpet.114.219329 Source

Feillet-Coudray C et al. Free Radical Research. 2014; 48(10):1232-46DOI: 10.3109/10715762.2014.945079 

Wang Q et al. PLoS One. 2013;8(6): e66417DOI: 10.1371/journal.pone.0066417 Source

Mercer JR et al. Free Radical Biology and Medicine. 2012;52(5):841-9DOI: 10.1016/j.freeradbiomed.2011.11.026

Lim S et al. Cellular Physiology and Biochemistry. 2011;28(5):873-86DOI: 10.1159/000335802 Source

MUSCULOSKELETAL HEALTH AND EXERCISE (14)

MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men. Pham T et al. European Journal of Applied Physiology. 2020 May 26DOI: 10.1007/s00421-020-04396-4 Source

Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function. Thoma A et al. Biogeronology. 2020 May 23DOI: 10.1007/s10522-020-09838-x

Kang L et al. Cell Proliferation. 2020 Feb 5;e12779DOI: 10.1111/cpr.12779

Myocardial NADPH oxidase-4 regulates the physiological response to acute exercise. Hancock M et al. Elife. 2018;7. pii: e41044DOI: 10.7554/eLife.41044 Source

MitoQ supplementation improves leg-extension power in healthy late middle-aged and older adults. Bispham NZ et al. The Journal of the Federation of American Societies for Experimental Biology. 2017; 31 (1) (suppl) abs. lb852DOI: 10.1096/fasebj.31.1_supplement.lb852 Source

Farnaghi S et al. The Journal of the Federation of American Societies for Experimental Biology. 2017;31(1):356-367DOI: 10.1096/fj.201600600R

Mitochondria‐specific antioxidant supplementation does not influence endurance exercise training‐induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake. Shill DD et al. J Physiol. 2016; 594(23): 7005–7014DOI: 10.1113/JP272491

Sakellariou GK et al. The Journal of the Federation of American Societies for Experimental Biology. 2016; 30(11): 3771–3785DOI: 10.1096/fj.201600450R

MitoQ supplementation improves motor function and muscle mitochondrial health in old male mice. Justice JN et al. Gerontologist 2015;55(2):163DOI: 10.1093/geront/gnv535.02 Source

Patková J et al. Cellular Physiology and Biochemistry. 2014;33(5):1439-51DOI: 10.1159/000358709

Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage. Wolff KJ et al. Journal of Orthopaedic Research. 2013; 31(2): 191–196DOI: 10.1002/jor.22223

Mitochondrial electron transport and glycolysis are coupled in articular cartilage. Martin AJ et al. Osteoarthritis and Cartilage. 2012; 20(4): 323–329DOI: 10.1016/j.joca.2012.01.003

MitoQ10 induces adipogenesis and oxidative metabolism in myotube cultures. Nierobisz LS et al. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2011;158(2):125-31DOI: 10.1016/j.cbpb.2010.10.003

Lowes DA et al. Free Radical Research. 2009;43(4):323-8DOI: 10.1080/10715760902736275 Source

SKIN HEALTH (9)

Victorelli S et al. The EMBO Journal. 2019DOI: 10.15252/embj.2019101982 Source

Tamer TM et al. Materials (Basel). 2018;11(4). pii: E569DOI: 10.3390/ma11040569

Protective effect of mitochondrially targeted antioxidant MitoQ on oxidatively stressed fibroblasts. Valachová K et al. L. Chemical Paper. 2018 72: 1223DOI: 10.1007/s11696-017-0359-5 Source

Anti-aging potentials of methylene blue for human skin longevity. Xiong Z-M et al. Scientific Reports. 2017 May. 7; 24DOI: 10.1038/s41598-017-02419-3

Oyewole AO et al. The Journal of the Federation of American Societies for Experimental Biology. 2014;28(1):485-94DOI: 10.1096/fj.13-237008

Collagen fragmentation promotes oxidative stress and elevates matrix metalloproteinase-1 in fibroblasts in aged human skin. Fisher GJ et al. The American Journal of Pathology. 2009; 174(1): 101–114DOI: 10.2353/ajpath.2009.080599 Source

Cellular response to infrared radiation involves retrograde mitochondrial signalling. Schroeder P et al. Free Radical Biology and Medicine. 2007;43(1):128-35DOI: 10.1016/j.freeradbiomed.2007.04.002 Source

7-Dehydrocholesterol enhances ultraviolet A-induced oxidative stress in keratinocytes: Roles of NADPH oxidase, mitochondria and lipid rafts. Valencia A et al. Free Radical Biology and Medicine. 2006; 41(11): 1704–1718DOI: 10.1016/j.freeradbiomed.2006.09.006 Source

MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Saretzki G et al. Aging Cell. 2003;2(2):141-3DOI: 10.1046/j.1474-9728.2003.00040.x Source

IMMUNOLOGY (33)

Supinski GS et al. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2009; 297(4): R1095–R1102DOI: 10.1152/ajpregu.90902.2008

Apostolova N et al. Pharmaceutical Research. 2011;28(11):2910-9DOI: 10.1007/s11095-011-0528-0 Source

An investigation of the effects of MitoQ on human peripheral mononuclear cells. Marthandan S et al. Free Radical Research.. 2011;45(3):351-8DOI: 10.3109/10715762.2010.532497 Source

Lowes DA et al. Free Radical Biology and Medicine. 2008;45(11):1559-65DOI: 10.1016/j.freeradbiomed.2008.09.003

Francischetti IM et al. PLoS One. 2014;9(2): e87140DOI: 10.1371/journal.pone.0087140 Source

Dashdorj A et al. BioMed Central Medicine.; 11: 178DOI: 10.1186/1741-7015-11-178

Lowes DA et al. British Journal of Anaesthesia. 2013; 110(3): 472–480DOI: 10.1093/bja/aes577 Source

Zhi L et al. The Journal of Immunology. 2012; 189(4): 1639–1647DOI: 10.4049/jimmunol.1200528

Powell RD et al. The Journal of Trauma and Acute Care Surgery. 2015;78(3):573-9DOI: 10.1097/TA.0000000000000533

Chen S et al. Chinese Critical Care Medicine. 2015;27(2):86-91DOI: 10.3760/cma.j.issn.2095-4352.2015.02.002

Ramsey H et al. International Immunopharmacology. 2014; 23(2): 658–663DOI: 0.1016/j.intimp.2014.10.019 Source

Wiens KE et al. PLoS Pathogens. 2016;12(8):e1005809DOI: 10.1371/journal.ppat.1005809

Spadoni T et al. Annals of the Rheumatic Diseases. 2016;75(2):521.2-521 2016 JulDOI: 10.1136/annrheumdis-2016-eular.3908 Source

Maiti AK et al. Scientific Reports. 2015; 5: 15434DOI: 10.1038/srep15434 Source

Kelly B et al. Journal of Biological Chemistry. 2015; 290(33): 20348–20359DOI: 10.1074/jbc.M115.662114

Fisicaro P et al. Nature Medicine. 2017;23(3):327-336DOI: 10.1038/nm.4275 Source

Ho GT et al. Journal of Crohn’s and Colitis. 2017;11(1):S97DOI: 10.1093/ecco-jcc/jjx002.163 Source

Buskiewicz IA et al. Science Signaling. 2016; 9(456): ra115DOI: 10.1126/scisignal.aaf1933 Source

Webster SJ et al. PLoS Pathogens. 2017; 13(6): e1006383DOI: 10.1371/journal.ppat.1006383 Source

Formentini L et al. Cell Reports. 2017;19(6):1202-1213DOI: 10.1016/j.celrep.2017.04.036

Chu F-F et al. Redox Biology. 2017;11: 144–156DOI: 10.1016/j.redox.2016.11.001 Source

Hu Q et al. Cell Death & Disease. 2018; 9(3): 403DOI: 10.1038/s41419-018-0436-x Source

Ho GT et al. Mucosal Immunology. 2018;11(1):120-130DOI: 10.1038/mi.2017.31 Source

Keck F et al. Virulence. 2018DOI: 10.1080/21505594.2018.1509668 Source

Mitochondrial-targeted antioxidant MitoQ prevents E. coli lipopolysaccharide-induced accumulation of triacylglycerol and lipid droplets biogenesis in epithelial cells. Fock E et al. Journal of Lipids. 2018;5745790DOI: 10.1155/2018/5745790

Budd R et al. Lupus Science & Medicine. 2019;6DOI: 10.1136/lupus-2019-lsm.38

Keck F et al. Viruses. 2018;10(11). pii: E606DOI: 10.3390/v10110606 Source

Zhang et al. Mediators of Inflammation. 2020DOI: 10.1155/2020/3276148 Source

The reduced oligomerization of MAVS mediated by ROS enhances the cellular radioresistance. Du et al. Oxidative Medicine and Cellular Longevity. 2020 March 4DOI: 10.1155/2020/2167129 Source

Sen Roy S et al. HIV Medicine. 2019;20. 231-231DOI: 10.1111/hiv.128.14

Fortner et al. Lupus Science & Medicine. 2020;7:e000387DOI: 10.1136/lupus-2020-000387

Tissue-resident macrophages actively suppress IL-1beta release via a reactive prostanoid/IL-10 pathway. Ipseiz N et al. The EMBO Journal. 2020 June 2DOI: 10.15252/embj.2019103454

Codo A et al. SSRN Electronic Journal. 2020 MayDOI: 10.2139/ssrn.3606770

GENETIC HEALTH (8)

Migrino RQ et al. American Journal of Physiology-Heart and Circulatory Physiology. 2011;301(6):H2305-12DOI: 10.1152/ajpheart.00503.2011 Source

Misfolding of short-chain acyl-CoA dehydrogenase leads to mitochondrial fission and oxidative stress. Schmidt SP et al. Molecular Genetics and Metabolism. 2010;100(2):155-62DOI: 10.1016/j.ymgme.2010.03.009 Source

Jauslin ML et al. The Journal of the Federation of American Societies for Experimental Biology. 2003;17(13):1972-4DOI: 10.1096/fj.03-0240fje Source

Bhattacharjee A et al. Journal of Biological Chemistry. 2016; 291(32): 16644–16658DOI: 10.1074/jbc.M116.727248 Source

Santini E et al. The Journal of Neuroscience. 2015; 35(49): 16213–16220DOI: 10.1523/JNEUROSCI.2246-15.2015 Source

Gallego-Villar L et al. Biochemical and Biophysical Research Communications. 2014;452(3):457-61DOI: 10.1016/j.bbrc.2014.08.091 Source

Polyak E et al. Molecular Genetics and Metabolism. 2018;123(4):449-462DOI: 10.1016/j.ymgme.2018.02.013

Rivera-Barahona A et al. Molecular Genetics and Metabolism. 2017;122(1-2):43-50DOI: 10.1016/j.ymgme.2017.07.009 Source

EYE HEALTH (5)

Vlachantoni D et al. Human Molecular Genetics. 2011; 20(2):322-35DOI: 10.1093/hmg/ddq467

Mustapha NM et al. Journal of Ophthalmology. 2010; 2010: 746978DOI: 10.1155/2010/746978

Vlachantoni D et al. Investigative Ophthalmology & Visual Science. 2006;47(13):5773

Zheng Q et al. Chemical Engineering Journal. 2020 May 23DOI: 10.1016/j.cej.2020.125621

Mitochondrial-targeted antioxidants attenuate TGF-β2 signaling in human trabecular meshwork cells. Rao VR et al. Investigative Ophthalmology & Visual Science. 2019;60:3613-3624DOI: 10.1167/iovs.19-27542 Source

LUNG HEALTH (4)

Jaffer OA et al. American Journal of Respiratory Cell and Molecular Biology. 2015; 52(1): 106–115DOI: 10.1165/rcmb.2013-0519OC Source

Li R et al. BioMed Research International. 2019DOI: 10.1155/2019/524898

Chen S et al. International Journal of Biological Sciences. 2019 Jun 2;15(7):1440-1451DOI: 10.7150/ijbs.30193

Wiegman CH et al. The Journal of Allergy and Clinical Immunology. 2015; 136(3): 769–780DOI: 10.1016/j.jaci.2015.01.046 Source

REPRODUCTIVE HEALTH AND DEVELOPMENT BIOLOGY (19)

Hobbs CE et al. Pediatrics International. 2008; 50(4): 481-8DOI: 10.1111/j.1442-200X.2008.02705.x

Botting KJ et al. 2016. Proceedings of the Physical Society (1985-1967), PCB334 (2016)

Mitochondria-targeted antioxidant mitoquinone protects post-thaw human sperm against oxidative stress injury. Liu L et al. Zhonghua Nan Ke Xue. 2016;22(3):205-11Source

Skeffington K et al. Aug 2015. Fetal and Neonatal Physiological Society 42nd Annual meeting: Vancouver

Inhibition of ROS production through mitochondria-targeted antioxidant and mitochondrial uncoupling increases post-thaw sperm viability in yellow catfish. Fang L et al. Cryobiology. 2014;69(3):386-93DOI: 10.1016/j.cryobiol.2014.09.005 Source

Aljunaidy MM et al. Pharmacological Research.;134:332-342DOI: 10.1016/j.phrs.2018.05.006

Sukjamnong S et al. Scientific Reports. 2018; 8: 6631DOI: 10.1038/s41598-018-24949-0 Source

Phillips TJ et al. Scientific Reports. 2017;7(1):9079DOI: 10.1038/s41598-017-06300-1 Source

Sukjamnong S et al. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2017;313(2): L416-L423DOI: 10.1152/ajplung.00134.2017 Source

Ding Y et al. International Journal of Molecular Medicine. 2018 Nov 5. [Epub ahead of print]DOI: 10.3892/ijmm.2018.3977 Source

Nuzzo AM et al. The American Journal of Pathology. 2018 Sep 21. pii: S0002-9440(18)30019-1DOI: 10.1016/j.ajpath.2018.07.027 Source

Vaka VR et al. Hypertension. 2018 Jul 16. piiDOI: 10.1161/HYPERTENSIONAHA.118.11290 Source

Ganguly E et al. Frontiers in Physiology. 2019 May 24DOI: 10.3389/fphys.2019.00562 Source

Exposing mouse oocytes to MitoQ during in vitro maturation improves maturation and developmental competence. Hosseinzadeh Shirzeyli M et al. Iranian Journal of Biotechnology. 2019DOI: 10.30498/IJB.2020.154641.2454 Source

Zhang J et al. Toxicology and Applied Pharmacology. 2019 Mar 2. pii: S0041-008X(19)30075-4DOI: 10.1016/j.taap.2019.03.001

Autophagy regulates functional differentiation of mammary epithelial cells. Elswood J et al. Autophagy. 2020DOI: 10.1080/15548627.2020.1720427

Marei W et al. Human Reproduction. 2019DOI: 10.1093/humrep/dez161 Source

Ibrahim AA et al. Life Sciences. 2019 Jul 12DOI: 10/1016/j.lfs.2019.116655

Yang Y et al. Antioxidants & Redox Signaling. 2020 Mar 31DOI: 10.1089/ars.2019.7891

TOXICITY SUPPORT (15)

Kalivendi SV et al. Biochemical Journal. 2005; 389(Pt 2): 527–539DOI: 10.1042/BJ20050285 Source

Vergeade A et al. Free Radical Biology and Medicine. 2010;49(5):748-56DOI: 10.1016/j.freeradbiomed.2010.05.024 Source

Consequences of long-term oral administration of the mitochondria-targeted antioxidant MitoQ to wild-type mice. Rodriguez-Cuenca S et al. Free Radical Biology and Medicine. 2010;48(1):161-72DOI: 10.1016/j.freeradbiomed.2009.10.039 Source

Whiteman M et al. Antioxidant & Redox Signaling. 2008;10(3):641-50DOI: 10.1089/ars.2007.1879 Source

Mukhopadhyay P et al. Free Radical and Medicine. 2012;52(2): 497–506DOI: 10.1016/j.freeradbiomed.2011.11.001 Source

Ojano-Dirain CP et al. Laryngoscope. 2012;122(11):2543-8DOI: 10.1002/lary.23593 Source

Wani WY et al. Neuropharmacology. 2011;61(8):1193-201DOI: 10.1016/j.neuropharm.2011.07.008 Source

Jurkuvenaite A et al. Free Radical Biology and Medicine. 2015; 85: 83–94DOI: 10.1016/j.freeradbiomed.2015.03.039 Source

Ng MR et al. Otolaryngology-Head and Neck Surgery. 2015;152(4):729-33DOI: 10.1177/0194599814564934

Jadidian A et al. Otology & Neurotology. 2015;36(3):526-30DOI: 10.1097/MAO.0000000000000517

Ojano-Dirain CP et al. Otology & Neurotology. 2014;35(3):533-9DOI: 10.1097/MAO.0000000000000192

Dirain CO et al. Otology & Neurotology. 2018;39(1):111-118DOI: 10.1097/MAO.0000000000001638 Source

Maiti AK et al. Neurotoxicity Research. 2017;31(3):358-372DOI: 10.1007/s12640-016-9692-7 Source

Tate AD et al. Otolaryngology-Head and Neck Surgery. 2017;156(3):543-548DOI: 10.1177/0194599816678381 Source

Guigni BA et al. American Journal of Physiology-Cell Physiology. 2018 Sep 12DOI: 10.1152/ajpcell.00002.2018 Source

REDOX BIOLOGY (31)

Superoxide activates mitochondrial uncoupling protein 2 from the matrix side. Studies using targeted antioxidants. Echtay KS et al. Journal of Biological Chemistry. 2002;277(49):47129-35DOI: 10.1074/jbc.M208262200 Source

Mitochondrial redox state regulates transcription of the nuclear-encoded mitochondrial protein manganese superoxide dismutase: A proposed adaptive response to mitochondrial  redox imbalance. Kim A et al. Free Radical Biology and Medicine. 2005;38(5):644-54DOI: 10.1016/j.freeradbiomed.2004.10.030

Dhanasekaran A et al. Journal of Biological Chemistry. 2004;279(36):37575-87DOI: 10.1074/jbc.M404003200 Source

Schäfer M et al. Circulation Research. 2003;92(9):1010-5DOI: 10.1161/01.RES.0000070882.81508.FC Source

Redox regulation of cAMP-responsive element-binding protein and induction of manganous superoxide dismutase in nerve growth factor-dependent cell survival. Bedogni B et al. Journal of Biological Chemistry. 2003;278(19):16510-9DOI: 10.1074/jbc.M301089200 Source

Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. James AM et al. Journal of Biological Chemistry. 2005;280(22):21295-312DOI: 10.1074/jbc.M501527200 Source

A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signalling of HIF-1alpha. Sanjuán-Pla A et al. FEBS Letters. 2005;579(12):2669-74DOI: 10.1016/j.febslet.2005.03.088

Protective role of MnSOD and redox regulation of neuronal cell survival. Galeotti T et al. Biomedicine & Pharmacotherapy. 2005;59(4):197-203DOI: 10.1016/j.biopha.2005.03.002 Source

OxLDL enhances L-type Ca2+ currents via lysophosphatidylcholine-induced mitochondrial reactive oxygen species (ROS) production. Fearon IM. Cardiovascular Research. 2006;69(4):855-64DOI: 10.1016/j.cardiores.2005.11.019 Source

Pletjushkina OY et al. Biochemistry (Moscow). 2006;71(1):60-7DOI: 10.1134/S0006297906010093 Source

Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion. Pletjushkina OY et al. Cell Death & Differentiation. 2005;12:1442–1444DOI: 10.1038/sj.cdd.4401685 Source

Koopman WJ et al. Cellular Metabolism. 2005;288(6):C1440-50DOI: 10.1152/ajpcell.00607.2004 Source

Respiratory chain deficiency slows down cell-cycle progression via reduced ROS generation and is associated with a reduction of p21CIP1/WAF1. Schauen M et al. Journal of Cellular Physiology. 2006;209(1):103-12DOI: 10.1002/jcp.20711 Source

Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. Chernyak BV et al. Biochimica et Biophysica Acta (BBA) – Bioenergetics . 2006;1757(5-6):525-34DOI: 10.1016/j.bbabio.2006.02.019 Source

Flow dilation in rat small mesenteric arteries is mediated by hydrogen peroxide generated from CYP epoxygenases and xanthine oxidase. Ngai CY. The Open Circulation and Vascular Journal. 2009 Apr. 2(1):15-22DOI: 10.2174/1877382600902010015 Source

Doughan AK et al. Antioxidants & Redox Signaling. 2007; 9(11):1825-36DOI: 10.1089/ars.2007.1693

Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. O'Malley Y et al. Journal of Biological Chemsitry. 2006;281(52):39766-75DOI: 10.1074/jbc.M608268200

TNFα-induced lysosomal membrane permeability is downstream of MOMP and triggered by caspase-mediated NDUFS1 cleavage and ROS formation. Huai J et al. Journal of Cell Science. 2013;126(Pt 17):4015-25DOI: 10.1242/jcs.129999 Source

Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Lee S et al. Cell Research. 2011;21(5):817-34DOI: 10.1038/cr.2011.55

Role of mitochondrial reactive oxygen species in osteoclast differentiation. Srinivasan S et al. Annals of the New York Academy of Sciences. 2010; 1192(1): 245–252DOI: 10.1111/j.1749-6632.2009.05377.x Source

Hämäläinen RH et al. Cell Reports. 2015; 11(10): 1614–1624DOI: 10.1016/j.celrep.2015.05.009

Huang W-Y et al. PLoS One. 2013;8(11):e81546DOI: 10.1371/journal.pone.0081546 Source

Differential modulation of ROS signals and other mitochondrial parameters by the antioxidants MitoQ, resveratrol and curcumin in human adipocytes. Hirzel E et al. Journal of Receptors and Signal Transduction. 2013; 33(5):304-12DOI: 10.3109/10799893.2013.822887 Source

Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Kim JH et al. Cell Death and Differentiation. 2018 Jul 24DOI: 10.1038/s41418-018-0165-9

Mitochondria-targeted molecules determine the redness of the zebra finch bill. Cantarero A et al. Biology Letters. 2017;13(10). pii: 20170455DOI: 10.1098/rsbl.2017.0455 Source

Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence. Tsai IC et al. Journal of Molecular and Cellular Cardiology. 2016;98:18-27DOI: 10.1016/j.yjmcc.2016.07.001 Source

Ammonia sensitive SLC4A11 mitochondrial uncoupling reduces glutamine induced oxidative stress. Ogando DG et al. Redox Biology. 2019;26:101260DOI: 10.1016/j.redox.2019.101260 Source

Redox-regulation and life-history trade offs: Scavenging mitochondrial ROS improves growth in a wild bird. Velando A et al. Scientific Reports. 2019;9(1)DOI: 10.1038/s41598-019-3853335-5

Detection of 8-oxoguanine and apurinic/apyrimidinic sites using a fluorophore-labeled probe with cell-penetrating ability. Kang DM et al. BMC Molecular and Cell Biology. 2019 Nov 27;20(1):54DOI: 10.1186/s12860-019-236

A mitochondria-targeted antioxidant affects the carotenoid-based plumage of red crossbills. Cantarero A et al. bioRxiv. 2019DOI: 10.1101/839670

Olesen M et al. Redox Biology. 2020 May 5DOI: 10.1016/j.redox.2020.101558 Source

CELLULAR BIOLOGY AND MECHANISM OF ACTION (42)

Kelso GF et al. Annals of the New York Academy of Sciences. 2002; 959:263-74DOI: 10.1111/j.1749-6632.2002.tb02098.x

Kelso GF et al. Journal of Biological Chemistry. 2001;276(7):4588-96DOI: 10.1074/jbc.M009093200

Delivery of bioactive molecules to mitochondria in vivo. Smith RA et al. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(9):5407-12DOI: 10.1073/pnas.0931245100

Effect of oxidative stress on dynamics of mitochondrial reticulum. Pletjushkina OY et al. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2006;1757(5-6):518-24DOI: 10.1016/j.bbabio.2006.03.018

Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. Asin-Cayuela J et al. FEBS Letters. 2004;571(1-3):9-16DOI: 10.1016/j.febslet.2004.06.045

Interaction of the mitochondrial-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. James AM et al. The Journal of Biological Chemistry. 2007; 282(20):14708-14718DOI: 10.1074/jbc.M611463200

Quantitation and metabolism of mitoquinone, a mitochondria-targeted antioxidant, in rat by liquid chromatography/tandem mass spectrometry. Li Y et al. Rapid Communications in Mass Spectrometry. 2007; 21(13):1958-64DOI: 10.1002/rcm.3048

The effects of exogenous antioxidants on lifespan and oxidative stress resistance in Drosophila melanogaster. Magwere T et al. Mechanisms of Ageing and Development. 2006;127(4):356-70DOI: 10.1016/j.mad.2005.12.009

Thioredoxin 1 and thioredoxin 2 have opposed regulatory functions on hypoxia-inducible factor-1alpha. Zhou J et al. Journal of Biological Chemistry. 2007;282(10):7482-90DOI: 10.1074/jbc.M608289200

Jarvis RM et al. Free Radical Research. 2007;41(9):1041-6DOI: 10.1080/10715760701557153

Transport and metabolism of MitoQ10, a mitochondria-targeted antioxidant, in Caco-2 cell monolayers. Li Y et al. Journal of Pharmacy and Pharmacology. 2007;59(4):503-11DOI: 10.1211/jpp.59.4.0004

Jou MJ et al. Journal of Pineal Research. 2007;43(4):389-403DOI: 10.1111/j.1600-079X.2007.00490.x

Role of calcium and cyclophilin D in the regulation of mitochondrial permeabilization induced by glutathione depletion. Lu C et al. Biochemical and Biophysical Research Communications. 2007 Nov;363(3):572-7DOI: 10.1016/j.bbrc.2007.08.196

Is antioxidant potential of the mitochondrial targeted ubiquinone derivative MitoQ conserved in cells lacking mtDNA?. Lu C et al. Antioxidants & Redox Signaling. 2008;10(3):651-60DOI: 10.1089/ars.2007.1865

Quijano C et al. American Journal of Physiology – Heart and Circulatory Physiology. 2007;293(6):H3404-14DOI: 10.1152/ajpheart.00761.2007

Rapid and extensive uptake and activation of hydrophobic triphenylphosphonium cations within cells. Ross MF et al. Biochemical Journal. 2008;411(3):633-45DOI: 10.1042/BJ20080063

Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments. Antonenko YN et al. Journal of Membrane Biology. 2008;222(3):141-9DOI: 10.1007/s00232-008-9108-6

Interaction of positively charged ubiquinone analog (MitoQ10) with DT-diaphorase from liver mitochondria. Kargin VI et al. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology (2008) 2: 33DOI: 10.1007/s11827-008-1006-7

Transport and metabolism of some cationic ubiquinone antioxidants (MitoQn) in Caco-2 cell monolayers. Li Y et al. European Journal of Drug Metabolism and Pharmacokinetics. 2008;33(4):199-204DOI: 10.1007/BF03190873

Cations SkQ1 and MitoQ accumulated in mitochondria delay opening of ascorbate/FeSO4-induced nonspecific pore in the inner mitochondrial membrane. Khailova LS et al. Biochemistry (Moscow). 2008;73(10):1121-4DOI: 10.1134/S0006297908100088

Kinetic analysis of permeation of mitochondria-targeted antioxidants across bilayer lipid membranes. Rokitskaya TI et al. Journal of Membrane Biology. 2008;224(1-3):9-19DOI: 10.1007/s00232-008-9124-6

Electrical relaxation experiments with bilayer lipid membranes in the presence of cationic quinones. Rokitskaya T et al. Biophysical Journal 2009 Feb. 96(3) 663ADOI:  10.1016/j.bpj.2008.12.3505

Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells. Fink BD et al. PLoS One. 2009 Jan. 4(1):e4250DOI: 10.1371/journal.pone.0004250

The mitochondrial antioxidants MitoE2 and MitoQ10 increase mitochondrial Ca2+ load upon cell stimulation by inhibiting Ca2+ efflux from the organelle. Leo S et al. Annals of the New York Academy of Sciences. 2008; 1147: 264–274DOI: 10.1196/annals.1427.019

Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Plecitá-Hlavatá L et al. The International Journal of Biochemistry & Cell Biology. 2009;41(8-9):1697-707DOI: 10.1016/j.biocel.2009.02.015

Chain-breaking antioxidant activity of reduced forms of mitochondria-targeted quinones, a novel type of geroprotectors. Roginsky VA et al. Aging (Albany NY). 2009; 1(5): 481–489DOI: 10.18632/aging.100049

Porteous CM et al. Biochimica et Biophysica Acta (BBA) – General Subjects. 2010;1800(9):1009-17DOI: 10.1016/j.bbagen.2010.06.001

Synthesis and characterization of MitoQ and idebenone analogues as mediators of oxygen consumption in mitochondria. Duveau DY et al. Bioorganic & Medicinal Chemistry. 2010;18(17):10.1016/j.bmc.2010.06.104DOI: 10.1016/j.bmc.2010.06.104

Interaction of yeast mitochondria with fatty acids and mitochondria-targeted lipophilic cations. Sukhanova EI et al. Biochemistry (Moscow). 2010;75(2):139-44DOI: 10.1134/S000297910020033

Raghunathan VK et al. Biomaterials. 2013;34(14):3559-70DOI: 10.1016/j.biomaterials.2013.01.085

Mitochondrially targeted compounds and their impact on cellular bioenergetics. Reily C et al. Redox Biology. 2013; 1(1): 86–93DOI: 10.1016/j.redox.2012.11.009

Bioenergetic effects of mitochondrial-targeted coenzyme Q analogs in endothelial cells. Fink BD et al. The Journal of Pharmacology and Experimental Therapeutics. 2012; 342(3): 709–719DOI: 10.1124/jpet.112.195586

Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes. Rokitskaya TI et al. Bioelectrochemistry. 2016; 111:23-30DOI: 10.1016/j.bioelechem.2016.04.009

On the mechanism underlying ethanol-induced mitochondrial dynamic disruption and autophagy response. Bonet-Ponce L et al. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease. 2015;1852(7):1400-9DOI: 10.1016/j.bbadis.2015.03.006

Rogers C et al. Free Radical Biology and Medicine. 2014; 67:330-41DOI: 10.1016/j.freeradbiomed.2013.11.012

Porteous CM et al. Biochimica et Biophysica Acta (BBA) – General Subjects. 2013;1830(6):3458-65DOI: 10.1016/j.bbagen.2013.02.005

Changes in the turnover of the cellular proteome during metabolic reprogramming: A role for mtROS in proteostasis. Garcia A et al. Journal of Proteome Research. 2019 Jul 2019DOI: 10.1021/acs.jproteome.9b00239

Slobodnyuk K et al. Cell Death & Disease. 2019 May 15;10(6):376DOI: 10.1038/s41419-019-1607-0

Ravasz D et al. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2018 May 7. pii: S0005-2728(18)30105-1DOI: 10.1016/j.bbabio.2018.05.002

Vizioli MG et al. Genes & Development. 2020 Jan 30DOI: 10.1101/gad.331272.119

Subversion of host cell mitochondria by RSV to favour virus production is dependent on inhibition of mitochondrial complex I and ROS generation. Hu M et al. Cells. 2019;8, 1417DOI: 10.3390/cells8111417

Gouzos M et al. Frontiers in Cellular and Infection Microbiology. 2020 19 MarchDOI: 10.3389/fcimb.2020.00110

REVIEWS, EDITORIALS AND LETTERS (6)

Targeting mitochondrial fitness as a strategy for healthy vascular aging. Rossman et al. Clin Sci (Lond). 2020 134 (12): 1491-1519DOI: 10.1042/CS20190559 Source

Mitochondria-targeted nutraceuticals in sports medicine: A new perspective. Ostojic SM. Res Sports Med. 2016;25(1):91-100DOI: 10.1080/15438627.2016.1258646 Source

Barbato JC. Hypertension. 2009;54(2):222-3DOI: 10.1161/HYPERTENSIONAHA.109.135533

MitoQ- A mitochondria-targeted antioxidant. Tauskela JS et al. IDrugs. 2007;10(6):399-412

Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Smith RA et al. Annals of the New York Academy of Sciences. 2011;1201:96-103DOI: 10.1111/j.1749-6632.2010.05627.x Source

The effect of MitoQ on aging-related biomarkers: A systematic review and meta-analysis. Braakhuis A et al. Oxidative Medicine and Cellular Longevity. Volume 2018, Article ID 8575263DOI: 10.1155/2018/8575263 Source