How To Care For Your Mitochondria

They’re essential to energy, focus, vitality, and metabolism. And yet most of us have no idea how our mitochondria work. Here’s how to tune up your body’s quadrillions of “energy factories” so you can perform at your peak.

We spend billions of dollars every year buying pills, potions, and creams that promise to slow the aging process. But what if we could enlist our own bodies to help us live longer, healthier lives?

Meet your mitochondria — the tiny factories in each of our cells that turn the food we eat and the oxygen we breathe into energy. When the communication breaks down between our cells’ nuclei and their mitochondria, aging accelerates. But here’s the exciting news — the opposite is also true: when intracellular communication is improved, the aging process slows down, and overall health and vitality improve.

“The aging process, we discovered, is like a married couple,” states Harvard Medical School biologist David Sinclair, PhD. “When they are young, they communicate well. But over time, living in close quarters for many years, communication breaks down.”

Fortunately, Sinclair notes, “restoring communication solves the problem.”

Ready to embark on a mitochondrial makeover? Here’s what you need to know about your body’s primary power source.

Why Mitochondria Matter

First, to grasp the sheer scale of mitochondria’s impact on our overall health, consider this: Each of us has quadrillions (that’s thousands of trillions) of these energy factories in our bodies.

Each mitochondrion is filled with some 17,000 biochemical assembly lines, all designed to produce a molecule called adenosine triphosphate, or ATP — our bodies’ major, most elemental fuel.

The more energy a tissue or organ demands for proper function, the more mitochondria its cells contain. Mitochondria are especially abundant in the cells that make up our hearts, brains, and muscles.

In fact, the heart is so energy-intensive that up to 40 percent of the space in its cells is taken up with mitochondrial power plants.

The density and health of the mitochondria in your organs and muscles are, to a large extent, a reflection of your current level of health and fitness (lean muscle tissue, for example, contains far more mitochondria than fat does, and a strong heart is likely to be denser with mitochondria than a weak one.)

The more healthy mitochondria your body contains, the better you’ll feel, and the more robust your metabolism will be. A mighty mitochondrial force translates to better energy and focus, and greater ability to sustain high levels of activity without fatiguing.

MitoQ mitochondria

Mitochondria produce energy by breaking down food, explains Bruce H. Cohen, MD, a neurologist at Northeast Ohio Medical University and an expert in mitochondrial disease. Then they release that energy in the form of ATP, along with some byproducts, like carbon dioxide, water, and free radicals.

The health implications of such mitochondria-related damage can be far-reaching, says paediatric neurologist Jong Rho, MD, of the University of Calgary and Alberta Children’s Hospital.

But even those of us who start life with healthy mitochondria can undermine and deplete them through basic wear and tear, or through outright abuse.

Stress, sedentary lifestyles, free-radical damage, and exposure to infections, allergens, and toxins can all cause our energy-generation network to falter.

But one of the chief reasons our mitochondria deteriorate, says Cohen, is that we eat an excess of poor-quality foods and a deficit of healthy ones.

Mitochondrion (Singular)

The empty calories of sugars, flours, and other processed foods force mitochondria to burn through a great deal of junk — generating free radicals and inflammation as they go — before useful nutrients can be siphoned out.

The glycemic impact of such foods (to say nothing of their trans fats, chemical additives, and other pro-inflammatory factors) only exacerbates the damage.

And unless we are eating plenty of phytonutrients, antioxidants, healthy fats, proteins, and fiber, we aren’t giving our bodies the basic tools they need to repair the damage.

It’s important to recognize, Cohen adds, that from a genetic standpoint, our mitochondria were never designed for the food environment and lifestyle to which we now subject them.

Furthermore, he argues, our ancestors rarely lived to 70, 80, or 90 years. So we are now asking our mitochondria to perform longer under far more challenging conditions.

Nutritional Tune-Up

There is perhaps no one who has a better understanding of the relationship between nutrition and mitochondrial health than Terry Wahls, MD, clinical professor of medicine at the University of Iowa.

For both general and mitochondrial health, Wahls recommends avoiding foods containing gluten, as well as dairy products, eggs, processed meats containing nitrates, and anything sweetened with sugar. For those especially concerned with their health, Wahls also recommends avoiding all grains, legumes, peanuts, and soy.

Beyond removing these foods, Wahls suggests eating six to nine cups of vegetables and fruits daily, including three green, three deeply colored, and three rich in sulfur (e.g., arugula, broccoli, bok choy). She also recommends eating 6 to 12 ounces of grassfed meat or wild-caught fish daily, plus, for die-hard types, a 14-fluid-ounce can of full-fat coconut milk.

At full force, Wahls’s diet becomes “ketogenic” — that is, so low in carbs and high in fat that the body stops getting energy from glucose (which comes from carbs) and starts burning fat instead.

During ketogenesis, fatty acids enter the liver, which breaks them down into “ketone bodies,” water-soluble biochemicals that can be used for energy, especially in the heart and the brain (two of the body’s most mitochondria-dense regions).

Although Wahls’s work with the ketogenic diet has been largely clinical, there’s strong laboratory evidence for the approach, and a powerful biochemical rationale behind it.

One of its leading advocates is neurologist Jong Rho, who says that in battling mitochondrial dysfunction, ketogenic diets may rank among the most promising treatment strategies available. “When mitochondria are fuelled by ketones instead of glucose,” Rho explains, “their ability to produce ATP is enhanced and free-radical byproducts are reduced.”

Tags All Blog Articles MitoQ Mitochondrial Health

As seen on
cbs mailonline Mens_Health_logo_orange_bg WG_Logo-1130x300 ls_logo